"ਸਮਤਾ" ਦੇ ਰੀਵਿਜ਼ਨਾਂ ਵਿਚ ਫ਼ਰਕ

ਛੋ
clean up ਦੀ ਵਰਤੋਂ ਨਾਲ AWB
ਛੋ (clean up ਦੀ ਵਰਤੋਂ ਨਾਲ AWB)
 
[[File:Asymmetric (PSF).svg|right|thumb|upright=0.8]]
[[File:Sphere symmetry group o.svg|thumb|upright=0.8|ਇੱਕ ਔਕਟਾਹੀਡ੍ਰਲ (ਅੱਠਭੁਜਾ ਅਕਾਰ) ਰੋਟੇਸ਼ਨਲ ਸਮਰੂਪਤਾ ਪ੍ਰਸਤੁਤ ਕਰਦਾ ਹੋਇਆ [[ਸਫੀਅਰ]] ਸਮਿੱਟ੍ਰੀਕਲ ਗੁਣਨਫਲ o ।o। ਪੀਲੇ ਰੰਗ ਵਾਲਾ ਖੇਤਰ ਮੁਢਲੀ ਡੋਮੇਨ ਦਿਖਾਉਂਦਾ ਹੈ]]
[[File:Studio del Corpo Umano - Leonardo da Vinci.png|right|thumb|upright=0.8|ਲਿਓਨਾਰਡੋ ਡਾ ਵਿੰਸੀ ਦਾ ਵਿਟ੍ਰੁਵਿਅਨ (ca. 1487) ਇਨਸਾਨੀ ਸ਼ਰੀਰ ਵਿੱਚ ਸਮਰੂਪਤਾ ਦੀ ਪ੍ਰਸਤੁਤੀ ਦੇ ਤੌਰ ਤੇ ਅਕਸਰ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ, ਅਤੇ ਸ਼ਾਖਾ ਦੁਆਰਾ , ਕੁਦਰਤੀ ਬ੍ਰਹਿਮੰਡ ਵਿੱਚ ਸਮਰੂਪਤਾ ਦੀ ਪ੍ਰਸਤੁਤੀ ਲਈ]]
[[File:BigPlatoBig.png|thumb|upright=0.8|ਇੱਕ ਫ੍ਰੈਕਟਲ- ਵਰਗਾ ਅਕਾਰ ਜੋ ਸਮਰੂਪਤਾ ਦੀਆਂ ਤਿੰਨ ਕਿਸਮਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਰਿਫਲੈਕਸ਼ਨਲ ਸਮਰੂਪਤਾ, ਰੋਟੇਸ਼ਨਲ ਸਮਰੂਪਤਾ ਅਤੇ ਸਵੈ-ਸਮਾਨਤਾ ਰੱਖਦਾ ਹੈ। ਇਹ ਅਕਾਰ ਇੱਕ ਸੀਮਤ ਉਪਵੰਡ ਕਨੂੰਨ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਕੀਤੀ ਗਈ ਹੈ]]
[[File:Great Mosque of Kairouan, west portico of the courtyard.jpg|right|thumb|upright=0.8|ਟੁਨੀਸੀਆ ਵਿਖੇ, ਮੌਸਕਿਉ ਔਫ ਉਕਬਾ ਵੀ ਕਹੀ ਜਾਣ ਵਾਲੀ ਕੈਰੋਉਅਨ ਦੀ ਮਹਾਨ ਮਸਜਿਦ (ਗ੍ਰੇਟ ਮੌਸਕਿਉ ਔਫ ਕੈਰੋਉਅਨ) ਵਿੱਚ ਇੱਕ ਬਰਾਮਦੇ ਦੇ ਸਮਰੂਪ ਤੋਰਣਪਥ (ਵਕਰਿਤ ਰਸਤੇ)]]
 
[[ਸਮਿੱਟਰੀ]] (ਗ੍ਰੀਕ ਤੋਂ συμμετρία symmetria ਜਿਸਦਾ ਅਰਥ ਹੈ “ਅਯਾਮਾਂ, ਉਚਿਤ ਅਨੁਪਾਤ, ਵਿਵਸਥਾ ਵਿੱਚ ਸਹਿਮਤੀ”) ਰੋਜ਼ਾਨਾ ਜਿੰਦਗੀ ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ ਲੈਅਬੱਧਤਾ ਪ੍ਰਤਿ ਇੱਕ ਸਮਝ ਅਤੇ ਸੁੰਦਰ ਅਨੁਪਾਤ ਅਤੇ ਸੰਤੁਲਨ ਹੁੰਦਾ ਹੈ। ਗਣਿਤ ਵਿੱਚ, [[ਸਮਰੂਪਤਾ]] ਦੀ ਪਰਿਭਾਸ਼ਾ ਹੋਰ ਸ਼ੁੱਧ ਪਰਿਭਾਸ਼ਾ ਹੁੰਦੀ ਹੈ, ਕਿ ਕੋਈ ਵਸਤੂ ਕਿਸੇ ਪਰਿਵਰਤਨ ਪ੍ਰਤਿ ਸਥਿਰ ਰਹਿੰਦੀ ਹੈ, ਜਿਵੇਂ ਰਿਫਲੈਕਸ਼ਨ ਪਰ ਹੋਰ ਪਰਿਵਰਤਨਾਂ ਸਮੇਤ ਵੀ ।ਵੀ। ਭਾਵੇਂ ਸਮਰੂਪਤਾ ਦੇ ਇਹ ਦੋ ਅਰਥ ਕਦੇ ਕਦੇ ਵੱਖਰੇ ਤੌਰ ਤੇ ਦੱਸੇ ਜਾਂਦੇ ਹਨ, ਫੇਰ ਵੀ ਇਹ ਸਬੰਧਤ ਹੁੰਦੇ ਹਨ, ਇਸਲਈ ਇਹ ਇੱਥੇ ਇਕੱਠੇ ਚਰਚਿਤ ਕੀਤੇ ਗਏ ਹਨ।
 
ਗਣਿਤਿਕ [[ਸਮਰੂਪਤਾ]] ਨੂੰ, ਰੇਖਾਗਣਿਤਿਕ ਪਰਿਵਰਤਨਾਂ ਜਿਵੇਂ [[ਸਕੇਲਿੰਗ]], [[ਰਿਫਲੈਕਸ਼ਨ]], ਅਤੇ [[ਰੋਟੇਸ਼ਨ]] ਰਾਹੀਂ; ਫੰਕਸ਼ਨਲ ਪਰਿਵਰਤਨਾਂ ਦੀਆਂ ਹੋਰ ਕਿਸਮਾਂ ਰਾਹੀਂ; ਅਤੇ ਅਮੂਰਤ ਵਸਤੂਆਂ, ਸਿਧਾਂਤਕ ਮਾਡਲਾਂ, ਭਾਸ਼ਾ, ਸੰਗੀਤ, ਅਤੇ ਇੱਥੋਂ ਤੱਕ ਕਿ ਖੁਦ ਗਿਆਨ ਰਾਹੀਂ; ਕਿਸੇ ਸਥਾਨਿਕ ਸਬੰਧ ਦੇ ਰੂਪ ਵਿੱਚ, [[ਵਕਤ]] ਦੇ ਲਾਂਘੇ ਨਾਲ ਦੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
 
ਇਹ ਆਰਟੀਕਲ [[ਸਮਰੂਪਤਾ]] ਨੂੰ ਤਿੰਨ ਦ੍ਰਿਸ਼ਟੀਕੋਣਾਂ ਤੋਂ ਦਰਸਾਉਂਦਾ ਹੈ: ਗਣਿਤ ਵਿੱਚ, ਰੇਖਾਗਣਿਤ ਸਮੇਤ, ਬਹੁਤ ਸਾਰੇ ਲੋਕਾਂ ਲਈ ਸਮਰੂਪਤਾ ਦੀ ਸਭ ਤੋਂ ਜਿਆਦਾ ਪ੍ਰਸਿੱਧ ਕਿਸਮ; ਵਿਗਿਆਨ ਅਤੇ ਕੁਦਰਤ ਵਿੱਚ; ਅਤੇ ਕਲਾ ਵਿੱਚ, ਜਿਸ ਵਿੱਚ ਆਰਕੀਟੈਕਚਰ, ਕਲਾ, ਅਤੇ ਸੰਗੀਤ ਸ਼ਾਮਿਲ ਹਨ।
 
[[ਸਮਰੂਪਤਾ]] ਦਾ ਉਲਟ ਅਸਮਰੂਪਤਾ ਹੁੰਦੀ ਹੈ।
 
==ਗਣਿਤ ਵਿੱਚ==
ਕੋਉ ਵੀ ਰੇਖਾ ਗਣਿਤ ਦੀ ਸਕਲ, ਜਾਂ ਵਸਤੂ ਵਿਚਵਿੱਚ ਸਮਤਾ ਹੈ ਜੇ ਇਸ ਨੂੰ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਬਰਾਬਰ ਹਿੱਸਿਆ ਵਿੱਚ ਵੰਡੀ ਜਾਵੇ
 
ਜੇ ਕਿਸੇ ਇਕਇੱਕ ਰੇਖਾ ਨਾਲ ਕੋਈ ਵਸਤੁ ਨੂੰ ਵੱਖ ਕਰੇ ਤੇ ਦੋਨੋਦੋਨੋਂ ਇਕਇੱਕ ਦੂਜੇ ਦਾ ਪ੍ਰਤੀਬਿੰਬ ਹੋਣ ਤਾਂ ਇਸ ਸਮਤਾ ਨੂੰ ਪ੍ਰਤੀਬਿੰਬ ਸਮਤਾ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।
ਜੇ ਕਿਸੇ ਵਸਤੂ ਨੂੰ ਇਸ ਦੀ ਸਕਲ ਨੂੰ ਨਾ ਬਦਲ ਕੇ ਕਿਸੇ ਖ਼ਾਸ ਬਿੰਦੂ ਤੇ ਘੁਮਾਇਆ ਜਾ ਸਕਦਾ ਹੋਵੇ ਤਾਂ ਇਸ ਸਮਤਾ ਨੂੰ ਰੋਟੇਸ਼ਨਲ ਸਮਤਾ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।
ਜੇ ਕੋਈ ਵਸਤੂ ਫੈਲਣ ਨਾਲ ਆਪਣੀ ਮੁਢਲੀ ਸ਼ਕਲ ਨਾ ਬਦਲੇ ਤਾਂ ਇਸ ਸਮਤਾ ਨੂੰ ਸਕੇਲ ਸਮਤਾ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।
===ਰੇਖਾਗਣਿਤ ਵਿੱਚ===
 
'''ਸਮਰੂਪ''' ਦੋ ਵਸਤੂਆਂ ਇਕੋ ਹੀ ਸ਼ਕਲ, ਅਕਾਰ ਦੀਆਂ ਹੋਣ ਉਸ ਨੂੰ ਸਮਰੂਪ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇੱਕ ਵਸਤੂ ਨੂੰ ਦੂਜੀ ਤੋਂ ਉਸ ਦੀਆਂ ਭੁਜਾਵਾਂ ਨੂੰ ਅਨੁਪਾਤਿਕ ਵਧਾਕੇ ਜਾਂ ਘਟਾਕੇ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਜਿਵੇਜਿਵੇਂ ਸਾਰੇ ਚੱਕਰ ਇੱਕ ਦੂਜੇ ਨੂੰ ਸਮਰੂਪ ਹੁੰਦੇ ਹਨ। ਸਾਰੀਆਂ ਸਮਬਾਹੂ ਤ੍ਰਿਭੁਜ ਸਮਰੂਪ ਹੁੰਦੀਆਂ ਹਨ। ਪਰ [[ਆਇਤ]], [[ਸਮਦੋਭੁਜੀ ਤ੍ਰਿਭੁਜ]] ਅਤੇ [[ਅੰਡਾਕਾਰ]] ਸਮਰੂਪ ਨਹੀਂ ਹੁੰਦੇ। ਜੇ ਕਿਸੇ ਤ੍ਰਿਭੁਜ ਦੇ ਦੋ ਕੋਣਾਂ ਦੀ ਮਾਤਰਾ ਦੁਜੀ ਤ੍ਰਿਭੁਜ ਦੇ ਦੋ ਕੋਣਾਂ ਦੇ ਬਰਾਬਰ ਹੋਵੇ ਤਾਂ ਤ੍ਰਿਭੁਜ ਸਮਰੂਪ ਹੁੰਦੀਆਂ ਹਨ ਇਸ ਨਿਯਮ ਨੂੰ AAA ਸਮਰੂਪ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਦੋ ਸਮਰੂਪ ਤ੍ਰਿਭੁਜਾਂ <math>\triangle ABC</math> ਅਤੇ <math>\triangle A'B'C'</math> ਵਿੱਚ ਉਹਨਾਂ ਦੀਆਂ ਸੰਗਤ ਭੁਜਾਵਾਂ ਦੇ ਅਨੁਪਾਤ ਸਮਾਨ ਹੁੰਦੇ ਹਨ। ਸਮਰੂਪ ਤ੍ਰਿਭੁਜਾਂ ਦੇ ਖੇਤਰਫਲਾਂ ਦਾ ਅਨੁਪਾਤ ਉਹਨਾਂ ਦੀਆਂ ਸੰਗਤ ਭੁਜਾਵਾਂ ਦੇ ਵਰਗ ਦੇ ਅਨੁਪਾਤ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ।<ref>For instance, {{harvnb|Venema|2006|loc=p. 122}} and {{harvnb|Henderson|Taimiṇa|2005|loc=p. 123}}</ref>
 
====ਨਿਯਮ====
 
ਜੇ <math> \angle BAC</math>
 
ਅਤੇ
 
<math>\angle B'A'C'</math>
 
ਕੋਣਾਂ ਦਾ ਮਾਪ ਅਤੇ
 
<math>\angle ABC</math>
 
ਅਤੇ
<math>\angle A'B'C'</math>
 
ਦਾ ਮਾਪ ਬਰਾਬਰ ਹੋਵੇ ਤਾਂ ਤੀਜਾ ਕੋਣ
 
<math>\angle ACB</math>
 
ਅਤੇ
 
<math>\angle A'C'B'</math>
 
ਬਰਾਬਰ ਹੀ ਹੁੰਦੇ ਹਨ ਤਾਂ ਦੋਨੋਦੋਨੋਂ ਤ੍ਰਿਭੁਜ ਸਮਰੂਪ ਹੁੰਦੇ ਹਨ।
:<math>\triangle ABC\sim\triangle A'B'C' \, </math>.
ਸਬੰਧ ''R'' ਸਮਤਾ ਹੈ ਜੇ ਅਤੇ ਸਿਰਫ ਜੇ ''Rab'' ਸੱਚ ਹੈ ਤਾਂ ''Rba'' ਸੱਚ ਹੈ।.<ref>Josiah Royce, Ignas K. Skrupskelis (2005) ''The Basic Writings of Josiah Royce: Logic, loyalty, and community (Google eBook)'' Fordham Univ Press, p. 790</ref>
ਤਦ ਜੇ ਪਾਲ ਦੀ ਉਮਰ ਮੈਰੀ ਜਿਨੀ ਹੈ ਤਾਂ ਮੈਰੀ ਦੀ ਉਮਰ ਪਾਲ ਜਿਨੀ ਹੈ ਤਾਂ ਇਹ ਤਰਕ ਦੀ ਸਮਤਾ ਹੈ।
ਇਹ ਸਬੰਧ '''ਅਤੇ''' (∧, or &), '''ਜਾਂ''' (∨, or |), '''ਦੂਹਰੀ ਸ਼ਤਰ''' ([[ਜੇ ਅਤੇ ਸਿਰਫ ਜੇ]]) (↔) ਹਨ।
 
===ਗਣਿਤ ਦੇ ਹੋਰ ਖੇਤਰਾਂ ਵਿੱਚ===
[[File:Brillouin Zone (1st, FCC).svg|thumb|right|200px| ਸਮਰੂਪਤਾ ਨਾਮਕਰਣ ਦਿਖਾਉਂਦਾ ਹੋਇਆ [[FCC ਲੈੱਟਿਸ]] ਦਾ ਪਹਿਲਾ [[ਬਰਿੱਲੁਇਨ ਜ਼ੋਨ]]]]
 
[[ਭੌਤਿਕ ਵਿਗਿਆਨ]] ਅੰਦਰ, ਕਿਸੇ ਭੌਤਿਕੀ ਸਿਸਟਮ ਦੀ ਇੱਕ [[ਸਮਰੂਪਤਾ]], [[ਸਿਸਟਮ]] ਦਾ ਉਹ (ਪਰਖਿਆ ਜਾਂ ਅੰਦਰੂਨੀ) ਭੌਤਿਕੀ ਜਾਂ ਗਣਿਤਿਕ ਲੱਛਣ ਹੁੰਦੀ ਹੈ ਜੋ ਕੁੱਝ ਪਰਿਵਰਤਨਾਂ ਅਧੀਨ ਸੁਰੱਖਿਅਤ ਰਹਿੰਦਾ ਹੈ ਜਾਂ ਬਦਲਦਾ ਨਹੀਂ ਹੈ।
 
ਖਾਸ ਪਰਿਵਰਤਨਾਂ ਦੀ ਕੋਈ ਫੈਮਲੀ ਨਿਰੰਤਰ (ਜਿਵੇਂ ਕਿਸੇ ਚੱਕਰ ਦੀ ਰੋਟੇਸ਼ਨ) ਜਾਂ [[ਡਿਸਕ੍ਰੀਟ]] (ਅਨਿਰੰਤਰ, ਜਿਵੇਂ ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਕਿਸੇ ਦੋਭੁਜ ਸਮਰੂਪ ਅਕਾਰ ਦੀ [[ਰਿਫਲੈਕਸ਼ਨ]], ਜਾਂ ਕਿਸੇ ਨਿਯਮਿਤ ਬਹੁਭੁਜ ਦੀ ਰੋਟੇਸ਼ਨ) ਹੋ ਸਕਦੀ ਹੈ। ਨਿਰੰਤਰ ਅਤੇ ਅਨਿਰੰਤਰ ਪਰਿਵਰਤਨ ਸਮਰੂਪਤਾਵਾਂ ਦੀਆਂ ਸਬੰਧਤ ਕਿਸਮਾਂ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਨਿਰੰਤਰ ਸਮਰੂਪਤਾਵਾਂ ਨੂੰ [[ਲਾਈ ਗਰੁੱਪ|ਲਾਈ ਗਰੁੱਪਾਂ]] ਰਾਹੀਂ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਜਦੋਂਕਿ ਅਨਿਰੰਤਰ ਸਮਰੂਪਤਾਵਾਂ ਨੂੰ ਸੀਮਤ ਗਰੁੱਪਾਂ (ਦੇਖੋ [[ਸਮਰੂਪਤਾ ਗਰੁੱਪ]]) ਰਾਹੀਂ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।
 
ਇਹ ਦੋ ਧਾਰਨਾਵਾਂ, ਲਾਈ ਅਤੇ ਸੀਮਤ ਗਰੁੱਪ, ਅਜੋਕੀ ਭੌਤਿਕ ਵਿਗਿਆਨ ਦੀਆਂ ਬੁਨਿਆਦੀ ਥਿਊਰੀਆਂ ਵਾਸਤੇ ਬੁਨਿਆਦਾਂ ਹਨ। ਸਮਰੂਪਤਾਵਾਂ ਗਰੁੱਪ ਪ੍ਰਸਤੁਤੀਆਂ ਵਰਗੀਆਂ ਗਣਿਤਿਕ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀਆਂ ਲਈ ਅਕਸਰ ਜਿਮੇਵਾਰਜ਼ਿੰਮੇਵਾਰ ਹਨ, ਅਤੇ ਇਸਦੇ ਨਾਲ ਹੀ, ਕਈ ਸਮੱਸਿਆਵਾਂ ਨੂੰ ਸਰਲ ਕਰਨ ਲਈ ਵਰਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ।
 
ਤਰਕ ਦੇ ਤੌਰ ਤੇ [[ਭੌਤਿਕ ਵਿਗਿਆਨ]] ਅੰਦਰ ਕਿਸੇ ਸਮਰੂਪਤਾ ਦੀ ਸਭ ਤੋਂ ਜਿਆਦਾ ਮਹੱਤਵਪੂਰਨ ਉਦਾਹਰਨ ਇਹ ਹੈ ਕਿ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਇਸ਼ਾਰਿਆਂ ਦੀਆਂ ਸਾਰੀਆਂ ਫਰੇਮਾਂ ਵਿੱਚ ਇੱਕੋ ਮੁੱਲ ਰੱਖਦੀ ਹੈ, ਜਿਸਨੂੰ ਗਣਿਤਿਕ ਸ਼ਬਦਾਂ ਵਿੱਚ [[ਪੋਆਇਨਕੇਅਰ ਗਰੁੱਪ]] ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਜੋ [[ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ]] ਦਾ ਸਮਰੂਪਤਾ ਗਰੁੱਪ ਹੈ। ਇੱਕ ਹੋਰ ਮਹੱਤਵਪੂਰਨ ਉਦਾਹਰਨ ਮਨਚਾਹੇ ''ਡਿੱਫਰੈਂਸ਼ੀਏਬਲ ਨਿਰਦੇਸ਼ਾਂਕ ਪਰਿਵਰਤਨਾਂ'' ਅਧੀਨ ਭੌਤਿਕੀ ਨਿਯਮਾਂ ਦੇ ਰੂਪ ਦੀ [[ਇਨਵੇਰੀਅੰਸ]] (ਸਥਿਰਤਾ) ਹੈ, ਜੋ [[ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ]] ਅੰਦਰ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਵਿਚਾਰ ਹੈ।
 
===ਜੀਵ ਵਿਗਿਆਨ ਵਿੱਚ===
 
ਸਾਰੇ ਪ੍ਰਾਣੀ ਸਮੇਤ ਮਨੁੱਖ ਦਾ ਸੱਜਾ ਪਾਸਾ ਅਤੇ ਖੱਬਾ ਪਾਸੇ ਵਿਚਵਿੱਚ ਸਮਾਨਤਾ ਹੈ। ਜੇ ਇਹਨਾਂ ਦੀ ਸਰੀਰ ਨੂੰ ਵਿੱਚਕਾਰ ਤੋਂ ਦੇਖਿਆ ਜਾਵੇ ਤਾ ਸੱਜਾ ਅਤੇ ਖੱਬਾ ਵਿਚਵਿੱਚ ਸਮਤਾ ਹੈ। ਪੌਦਿਆ ਅਤੇ ਸਮੁੰਦਰੀ ਜੀਵਾਂ ਵਿੱਚ ਰੇਡੀਅਲ ਜਾਂ ਘੁਮਾਉਦਾਰ ਸਮਤਾ ਹੁੰਦੀ ਹੈ। ਤਾਰਾ ਮੱਛੀ , ਸਮੁੰਦਰੀ ਲਿਲੀ ਵਿੱਚ ਪੰਜ'ਭੁਜੀ ਸਮਤਾ ਹੁੰਦੀ ਹੈ।
 
===ਰਸਾਇਣ ਵਿਗਿਆਨ ਵਿੱਚ===
==ਸਮਾਜਿਕ ਮੇਲਜੋਲਾਂ ਵਿੱਚ==
 
==ਕਲਾ ਵਿੱਚ==
 
===ਆਰਟੀਟੈਕਚਰ ਵਿੱਚ===
 
[[File:Taj Mahal, Agra views from around (85).JPG|thumb|ਸਾਹਮਣੇ ਪਾਸੇ ਤੋਂ ਦੋ ਪਾਸੀ ਸਮਤਾ ਅਤੇ ਉਪਰੋਂ ਚਾਰ ਪਾਸੀ ਸਮਤਾ ]]
ਆਰਕੀਟੈਕਚਰ ਦੇ ਹਰ ਨਾਪ 'ਚ ਸਮਤਾ ਹੈ। ਇਮਾਰਤਾਂ ਦੇ ਵਿੱਚ ਸਮਤਾ ਦੇਖਣ ਨੂੰ ਮਿਲਦੀ ਹੈ ਜਿਵੇਜਿਵੇਂ [[ਤਾਜ ਮਹਿਲ]] ਅਮਰੀਕਾ ਦੇ ਰਾਸਟਰਪਤੀ ਦਾ ਦਫਤਰ [[ਵਾਈਟ ਹਾਊਸ]]<ref>[http://members.tripod.com/vismath/kim/ Williams: Symmetry in Architecture]. Members.tripod.com (1998-12-31). Retrieved on 2013-04-16.</ref><ref>[http://www.math.nus.edu.sg/aslaksen/teaching/math-art-arch.shtml Aslaksen: Mathematics in Art and Architecture]. Math.nus.edu.sg. Retrieved on 2013-04-16.</ref> [[ਇਰਾਨ]] ਦੇ ਸ਼ਹਿਰ [[ਇਸ਼ਫਾਨ]] ਵਿੱਚ ਮਸਜਿਦ ਦੀ ਛੱਤ ਦੀ ਸਮਤਾ ਅੱਠ ਪਾਸੀ ਹੈ
[[File:Isfahan Lotfollah mosque ceiling symmetric.jpg|thumb|[[ਮਸਜਿਦ]]]]
 
==ਹਵਾਲੇ==
{{ਹਵਾਲੇ}}
 
[[Category:ਭੌਤਿਕ ਵਿਗਿਆਨ]][[Category:ਗਣਿਤ]][[Category:ਜੀਵ ਵਿਗਿਆਨ]][[Category:ਰਸਾਇਣ ਵਿਗਿਆਨ]]
[[ਸ਼੍ਰੇਣੀ:ਭੌਤਿਕ ਵਿਗਿਆਨ]]
[[ਸ਼੍ਰੇਣੀ:ਗਣਿਤ]]
[[ਸ਼੍ਰੇਣੀ:ਜੀਵ ਵਿਗਿਆਨ]]
[[ਸ਼੍ਰੇਣੀ:ਰਸਾਇਣ ਵਿਗਿਆਨ]]