SPP_silver-air_interface_10um.gif(480 × 320 ਪਿਕਸਲ, ਫ਼ਾਈਲ ਅਕਾਰ: 398 KB, MIME ਕਿਸਮ: image/gif, looped, 30 frames, 2.1 s)

ਇਹ ਫ਼ਾਈਲ Wikimedia Commons ਦੀ ਹੈ ਅਤੇ ਹੋਰ ਪਰਿਯੋਜਨਾਵਾਂ ਵਿੱਚ ਵੀ ਵਰਤੀ ਜਾ ਸਕਦੀ ਹੈ । ਇਸ ਫ਼ਾਈਲ ਦੇ ਵੇਰਵਾ ਸਫ਼ੇ ਵਿੱਚ ਮੌਜੂਦ ਵੇਰਵਾ ਹੇਠ ਦਿਸ ਰਿਹਾ ਹੈ।

ਸਾਰ

ਵੇਰਵਾ
English: E-field of a surface plasmon polariton (actually in this regime it's more like a Sommerfeld Zenneck wave), at the silver-air interface. The animation shows how the E-field varies over an optical cycle. The free-space wavelength is 10 microns, so the permittivity of silver is (-2712 + 1408i). The picture is 0.6 * 10 microns across horizontally.
ਮਿਤੀ
ਸਰੋਤ ਆਪਣਾ ਕੰਮ
ਲਿਖਾਰੀ Sbyrnes321

ਲਸੰਸ

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Source code

 
This plot was created with Matplotlib.
"""
(C) Steven Byrnes, 2013. This code is released under the MIT license
http://opensource.org/licenses/MIT

This code runs in Python 2.7 or 3.3. It requires imagemagick to be installed;
that's how it assembles images into animated GIFs.

Creates an animation of the electric field vectors of a
surface-plasmon-polariton wave. The metal-dielectric interface is at z=0,
with metal at z<0 and dielectric (such as air) at z>0.
"""
 
# Use Python 3 style division and print
# a/b is real division, a//b is integer division
from __future__ import division, print_function

import numpy as np
from cmath import exp, pi

import matplotlib.pyplot as plt
from matplotlib.path import Path
import matplotlib.patches as patches

import subprocess, os
directory_now = os.path.dirname(os.path.realpath(__file__))

# --- PART 1 OF 2: PHYSICS --- #

def Efield(x_times_kvac, z_times_kvac, t_times_omega, eps_m, eps_d, print_wave_properties=False):
    """"
    Inputs:
      * x_times_kvac and z_times_kvac are the coordinates (x,z) multiplied
          by the vacuum angular wavenumber kvac = omega / c.
      * t_times_nu is the time t multiplied by frequency nu.
      * eps_m and eps_d are the complex permittivities of the metal and dielectric.
    
    Output: The electric field vector (E_x,E_z). It is scaled so that
      E_z(0, 0, tw, e1, e2) = cos(tw) on the dielectric side of the interface.
    """
    # Calculate components of the angular wavevector in the dielectric and
    # metal, as a multiple of kvac = omega / c:
    eps_m = complex(eps_m) #cast to complex, so square roots won't raise errors.
    kx_over_kvac = (eps_m * eps_d / (eps_m + eps_d))**(1/2)
    kzd_over_kvac = (eps_d - kx_over_kvac**2)**(1/2)
    kzm_over_kvac = (eps_m - kx_over_kvac**2)**(1/2)
    
    # Pick the correct square-roots, so that e^(i*k*z) decays away from interface
    if kzd_over_kvac.imag < 0:
        kzd_over_kvac *= -1
    if kzm_over_kvac.imag > 0:
        kzm_over_kvac *= -1
    
    #double-check the boundary condition
    almost_equal = lambda a,b,tolerance : (abs(a-b) / (abs(a) + abs(b))) < tolerance
    if not almost_equal(kzd_over_kvac * eps_m, kzm_over_kvac * eps_d, 1e-10):
        raise ValueError('Something is wrong! Boundary condition fails!')
    
    if print_wave_properties:
        print('kx / kvac = ', kx_over_kvac)
        print('kzd / kvac = ', kzd_over_kvac)
        print('kzm / kvac = ', kzm_over_kvac)
        print('Wavelength / (Vacuum wavelength) = ', 1/(kx_over_kvac.real))
        if kx_over_kvac.imag != 0:
            print('(Decay length) / (Vacuum wavelength) = ', 1/(kx_over_kvac.imag))
        else:
            print('Wave does not decay, it propagates forever.')
        print('(Decay length into dielectric) / (Vacuum wavelength) = ', 1/(kzd_over_kvac.imag))
        print('(Decay length into metal) / (Vacuum wavelength) = ', -1/(kzm_over_kvac.imag))
   
    if z_times_kvac > 0:
        # dielectric
        Ez = exp(1j * kx_over_kvac * x_times_kvac + 1j * kzd_over_kvac * z_times_kvac - 1j * t_times_omega)
        Ex = -Ez * kzd_over_kvac / kx_over_kvac
    else:
        # metal
        Ez = (kzd_over_kvac / kzm_over_kvac) * exp(
                 1j * kx_over_kvac * x_times_kvac + 1j * kzm_over_kvac * z_times_kvac - 1j * t_times_omega)
        Ex = -Ez * kzm_over_kvac / kx_over_kvac
    return (Ex.real, Ez.real)

# --- PART 2 OF 2: DRAWING --- #

def draw_box(x1, x2, y1, y2, color):
    """
    Code to draw a rectangular box in matplotlib ... used to color the metal area.
    See http://matplotlib.org/users/path_tutorial.html
    """
    vertices = [ (x1, y1), (x1, y2), (x2, y2), (x2, y1), (x1, y1)]
    codes = [Path.MOVETO,Path.LINETO,Path.LINETO,Path.LINETO,Path.CLOSEPOLY]
    path = Path(vertices, codes)
    #lw=0 means no outline; zorder=-1 means it shouldn't block the arrows.
    return patches.PathPatch(path, facecolor=color, lw=0, zorder=-1)

def draw_frame(t_times_omega, eps_m, eps_d, aspect_ratio=1.5,
               frac_metal=0.5, fig_width_px=480, x_range_times_kvac=2,
               img_filename=None):
    """
    Draw one frame of the animation.
    
    Inputs:
      * t_times_omega is time multiplied by angular frequency,
          it goes 0 --> 2pi each cycle.
      * eps_m and eps_d are the dielectric constants of the metal and dielectric
      * aspect_ratio is width over height
      * frac_metal is how much of the image is taken up by the metal.
      * fig_width_px is figure width in pixels
      * x_range_times_kvac is the width of the image as a multiple of kvac.
      * "img_filename" is what to save the frame as (or None to not save it).
    """
    # Figure geometry...
    fig_height_px = fig_width_px // aspect_ratio
    dpi = 80 #This number doesn't affect the final animation...
    fig_width_inches = fig_width_px / dpi
    fig_height_inches = fig_height_px / dpi
    
    # Coordinate limits in figure. All are implicitly multiplied by kvac.
    z_range_times_kvac = x_range_times_kvac / aspect_ratio
    xmin = 0
    xmax = x_range_times_kvac
    zmin = -z_range_times_kvac * frac_metal
    zmax = z_range_times_kvac * (1-frac_metal)
    
    # How many arrows to draw?
    num_arrows_x = 15
    num_arrows_z = num_arrows_x // aspect_ratio
    
    # Pick arrow coordinates...
    arrow_x_list, spacing = np.linspace(xmin, xmax, num=num_arrows_x,
                                     endpoint=False, retstep=True)
    arrow_x_list += spacing / 2
    
    arrow_z_list, spacing = np.linspace(zmin, zmax, num=num_arrows_z,
                                     endpoint=False, retstep=True)
    arrow_z_list += spacing / 2

    X,Z = np.meshgrid(arrow_x_list, arrow_z_list)
    
    # Arrow length scale: Larger number = smaller arrows
    arrow_len_scale = 15
    
    # Calculate the length of each arrow
    Ex_func = np.vectorize(lambda x,z : Efield(x,z,t_times_omega,eps_m,eps_d)[0])
    Ex_array = Ex_func(X, Z)
    Ez_func = np.vectorize(lambda x,z : Efield(x,z,t_times_omega,eps_m,eps_d)[1])
    Ez_array = Ez_func(X, Z)
    
    # Open a new figure with correct aspect ratio and pixel count and white background
    fig = plt.figure(figsize = (fig_width_inches,fig_height_inches), dpi=dpi, facecolor='w')
    
    # Draw a new set of axes that fill the entire figure area
    ax=fig.add_axes((0,0,1,1),axisbg='w')
    ax.set_axis_off()
    
    # Color the metal part
    metal_color = '#dddddd' #light gray
    ax.add_patch(draw_box(xmin,xmax,zmin,0,metal_color))
    
    # Draw the arrows
    ax.quiver(X, Z, Ex_array , Ez_array , scale=arrow_len_scale, scale_units='width', pivot='middle')
    
    ax.set_xlim(xmin, xmax)
    ax.set_ylim(zmin, zmax)
    if img_filename is not None:
        fig.savefig(os.path.join(directory_now, img_filename), dpi=dpi)
 
def draw_anim(eps_m, eps_d, anim_filename='anim.gif', frames_in_anim=30,
              total_anim_time_in_sec=2, keep_frame_images=False, **kwargs):
    """
    Create an animated GIF. **kwargs are all the keyword arguments to
    draw_frame()
    
    keep_frame_images=True to save the individual frame image files that make
    up the animation; otherwise they are created and immediately deleted.
    """
    filename_list = ['temp' + str(n) + '.png' for n in range(frames_in_anim)]
    
    for n in range(frames_in_anim):
        draw_frame(2*pi*n/frames_in_anim, eps_m, eps_d,
                   img_filename=filename_list[n], **kwargs)
    
    seconds_per_frame = total_anim_time_in_sec / frames_in_anim
    frame_delay = str(seconds_per_frame * 100)
    command_list = ['convert', '-delay', frame_delay, '-loop', '0'] + filename_list + [anim_filename]
    # Use the "convert" command (part of ImageMagick) to build the animation
    subprocess.call(command_list, cwd=directory_now)
    if keep_frame_images is False:
        for filename in filename_list:
            os.remove(os.path.join(directory_now, filename))

###################################################################

if True:
    # Silver-air interface at 9.919um = 0.125eV, using data from Palik (p357)
    eps_m = (13.11+53.7j)**2
    eps_d = 1
    # Print diagnostics
    Efield(0, 0, 0, eps_m, eps_d, print_wave_properties=True)
    # Create animation
    draw_anim(eps_m, eps_d, anim_filename='plas_Silver_10um_Palik.gif',
              frac_metal=.2, x_range_times_kvac=4)

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

ਚਿਤਰਨ

creator ਅੰਗਰੇਜ਼ੀ

source of file ਅੰਗਰੇਜ਼ੀ

original creation by uploader ਅੰਗਰੇਜ਼ੀ

3 ਦਸੰਬਰ 2013

ਫ਼ਾਈਲ ਦਾ ਅਤੀਤ

ਤਾਰੀਖ/ਸਮੇਂ ’ਤੇ ਕਲਿੱਕ ਕਰੋ ਤਾਂ ਉਸ ਸਮੇਂ ਦੀ ਫਾਈਲ ਪੇਸ਼ ਹੋ ਜਾਵੇਗੀ।

ਮਿਤੀ/ਸਮਾਂਨਮੂਨਾਨਾਪਵਰਤੋਂਕਾਰਟਿੱਪਣੀ
ਮੌਜੂਦਾ16:44, 3 ਦਸੰਬਰ 201316:44, 3 ਦਸੰਬਰ 2013 ਵੇਲੇ ਦੇ ਵਰਜਨ ਦਾ ਅੰਗੂਠਾਕਾਰ ਰੂਪ480 × 320 (398 KB)Sbyrnes321User created page with UploadWizard

ਇਹ ਫਾਈਲ ਹੇਠਾਂ ਦਿੱਤਾ ਸਫ਼ਾ ਵਰਤਦਾ ਹੈ:

ਫ਼ਾਈਲ ਦੀ ਵਿਆਪਕ ਵਰਤੋਂ

ਇਸ ਫ਼ਾਈਲ ਨੂੰ ਹੋਰ ਹੇਠ ਲਿਖੇ ਵਿਕੀ ਵਰਤਦੇ ਹਨ: