ਡਿਫ੍ਰੈਂਸ਼ੀਅਲ ਰੇਖਾਗਣਿਤ ਅੰਦਰ, ਕਿਸੇ n-ਅਯਾਮੀ ਰੀਮਾਨੀਅਨ ਮੈਨੀਫੋਲਡ (M, g) ਉੱਤੇ ਕਿਸੇ ਸਪਿੱਨ ਬਣਤਰ ਦਿੱਤੀ ਹੋਣ ਤੇ, ਸਪਿੱਨੌਰ ਬੰਡਲ S ਦੇ ਇੱਕ ਹਿੱਸੇ (ਸੈਕਸ਼ਨ) ਨੂ੍ੰ ਇੱਕ ਸਪਿੱਨੌਰ ਫੀਲਡ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਕੰਪਲੈਕਸ ਵੈਕਟਰ ਬੰਡਲ

ਸਪਿੱਨੌਰਾਂ Δn ਉੱਤੇ ਇਸਦੇ ਬਣਤਰ ਗਰੁੱਪ ਸਪਿੱਨ(n) ਦੀ ਸਪਿੱਨ ਪੇਸ਼ਕਸ਼ ਰਾਹੀਂ M ਉੱਪਰ ਸਪਿੱਨ ਫ੍ਰੇਮਾਂ ਦੇ ਸਬੰਧਤ ਪ੍ਰਿੱਸੀਪਲ ਬੰਡਲ

ਨਾਲ ਜੁੜਿਆ ਹੁੰਦਾ ਬੰਡਲ ਹੁੰਦਾ ਹੈ। ਕਣ ਭੌਤਿਕ ਵਿਗਿਆਨ ਅੰਦਰ, ਸਪਿੱਨ s ਵਾਲੇ ਕਣ, 2s-ਅਯਾਮੀ ਸਪਿੱਨੌਰ ਫੀਲਡ ਰਾਹੀਂ ਦਰਸਾਏ ਜਾਂਦੇ ਹਨ, ਜਿੱਥੇ s, ਇੱਕ ਇੰਟਜਰ ਜਾਂ ਇੱਕ ਅਧਾ-ਇੰਟਜਰ ਹੁੰਦਾ ਹੈ। ਫਰਮੀਔਨਾਂ ਨੂੰ ਸਪਿੱਨੌਰ ਫੀਲਡ ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ, ਜਦੋਂਕਿ ਬੋਸੌਨਾਂ ਨੂੰ ਟੈਂਸਰ ਫੀਲਡ ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।

ਰਸਮੀ ਪਰਿਭਾਸ਼ਾ

ਸੋਧੋ

ਮੰਨ ਲਓ (P, FP) ਕਿਸੇ ਰੀਮਾਨੀਅਨ ਮੈਨੀਫੋਲਡ (M, g) ਉੱਤੇ ਇੱਕ ਸਪਿੱਨ ਬਣਤਰ ਹੈ, ਯਾਨਿ ਕਿ,   ਦੀ ਦੋਹਰੀ ਕਵਰਿੰਗ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਦਿਸ਼ਾਬੱਧ ਰੱਖੇ ਗਏ ਔਰਥੋਨੌਰਮਲ ਫ੍ਰੇਮ ਬੰਡਲ   ਦੀ ਇੱਕ ਬਰਾਬਰ ਦੀ ਲਿਫਟ। ਸਪਿੱਨੌਰ ਫੀਲਡ ਨੂੰ ਆਮਤੌਰ ਤੇ[1]   ਕੰਪਲੈਕਸ ਵੈਕਟਰ ਬੰਡਲ

 

ਦੇ ਤੌਰ ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜੋ ਸਪਿੱਨ ਪ੍ਰਸਤੁਤੀ   ਸਦਕਾ ਸਪਿੱਨ ਬਣਤਰ P ਨਾਲ ਸਬੰਧਤ ਹੁੰਦਾ ਹੈ, ਜਿੱਥੇ U(W) ਕਿਸੇ ਹਿਲਬ੍ਰਟ ਸਪੇਸ W ਉੱਤੇ ਕ੍ਰਿਆਸ਼ੀਲ ਯੂਨਾਇਟ੍ਰੀ ਓਪਰੇਟਰਾਂ ਦੇ ਗਰੁੱਪ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ।

ਕੋਈ ਸਪਿੱਨੌਰ ਫੀਲਡ ਸਪਿੱਨੌਰ ਬੰਡਲ S ਦੇ ਕਿਸੇ ਭਾਗ (ਹਿੱਸਾ) ਹੋਣ ਵਜੋਂ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਯਾਨਿ ਕਿ, ਇੱਕ ਅਜਿਹੀ ਸੁਚਾਰੂ ਮੈਪਿੰਗ   ਦੇ ਤੌਰ ਤੇ ਕਿ  , M ਦਾ ਪਛਾਣ ਮੈਪਿੰਗ idM ਹੁੰਦਾ ਹੈ।

ਇਹ ਵੀ ਦੇਖੋ

ਸੋਧੋ

ਨੋਟਸ

ਸੋਧੋ
  1. Friedrich, Thomas (2000), Dirac Operators in Riemannian Geometry, p. 53

ਹਵਾਲੇ

ਸੋਧੋ
  • Nakli itihaas jo likheya geya hai kade na vaapriya jo ohna de base te, saade te saada itihaas bna ke ehna ne thop dittiyan. anglo sikh war te ek c te 3-4 jagaha te kiwe chal rahi c ikko war utto saal 1848 jdo angrej sara punjab 1845 ch apne under kar chukke c te oh 1848 ch kihna nal jang ladd rahe c. Script error: The function "citation198.168.27.221 14:54, 13 ਦਸੰਬਰ 2024 (UTC)'"`UNIQ--ref-0000000F-QINU`"'</ref>" does not exist.
  • Friedrich, Thomas (2000), Dirac Operators in Riemannian Geometry, American Mathematical Society, ISBN 978-0-8218-2055-1