ਹੈਮਿਲਟੋਨੀਅਨ ਮਕੈਨਿਕਸ ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਦੀ ਪੁਨਰ-ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਦੇ ਤੌਰ ਤੇ ਵਿਕਸਿਤ ਕੀਤੀ ਗਈ ਇੱਕ ਥਿਊਰੀ ਹੈ ਅਤੇ ਗੈਰ-ਹੈਮਿਲਟੋਨੀਅਨ ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਦੇ ਵਰਗੇ ਹੀ ਨਤੀਜੇ ਅਨੁਮਾਨਿਤ ਕਰਦੀ ਹੈ। ਇਹ ਇੱਕ ਵੱਖਰੀ ਗਣਿਤਿਕ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਵਰਤਦੀ ਹੈ, ਜੋ ਥਿਊਰੀ ਦੀ ਇੱਕ ਹੋਰ ਜਿਆਦਾ ਅਮੂਰਤ ਸਮਝ ਮੁਹੱਈਆ ਕਰਵਾਉਂਦੀ ਹੈ। ਇਤਿਹਾਸਿਕ ਤੌਰ ਤੇ, ਇਹ ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਦੀ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਪੁਨਰ-ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਸੀ, ਜਿਸਨੇ ਬਾਦ ਵਿੱਚ ਸਟੈਟਿਸਟੀਕਲ ਮਕੈਨਿਕਸ ਅਤੇ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੀ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਪ੍ਰਤਿ ਯੋਗਦਾਨ ਪਾਇਆ।

ਹੈਮਿਲਟੋਨੀਅਨ ਮਕੈਨਿਕਸ ਪਹਿਲੀ ਵਾਰ 1833 ਵਿੱਚ ਵਿਲੀਅਮ ਰੋਵਨ ਹੈਮਿਲਟਨ ਦੁਆਰਾ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦ ਕੀਤਾ ਗਿਆ ਸੀ।, ਜਿਸਨੇ ਲਗ੍ਰਾਂਜੀਅਨ ਮਕੈਨਿਕਸ ਤੋਂ ਸ਼ੁਰੂਆਤ ਕੀਤੀ ਸੀ।, ਜੋ 1788 ਵਿੱਚ ਜੋਸਫ ਲੁਇਸ ਲਗ੍ਰਾਂਜ ਦੁਆਰਾ ਪੇਸ਼ ਕੀਤੀ ਗਈ ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਦੀ ਇੱਕ ਭੂਤਪੂਰਵ ਪੁਨਰ-ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਰਹੀ ਸੀ।

ਸੰਖੇਪ ਸਾਰਾਂਸ਼ਸੋਧੋ

ਮੁਢਲੀ ਭੌਤਿਕੀ ਵਿਆਖਿਆਸੋਧੋ

ਕਿਸੇ ਲਗ੍ਰਾਂਜੀਅਨ ਤੋਂ ਇੱਕ ਹੈਮਿਲਟੋਨੀਅਨ ਕੈਲਕੁਲੇਟ ਕਰਨਾਸੋਧੋ

ਹੈਮਿਲਟਨ ਦੀਆਂ ਇਕੁਏਸ਼ਨਾਂ ਵਿਓਂਤਬੰਦ ਕਰਨੀਆਂਸੋਧੋ

ਲਗ੍ਰਾਂਜੀਅਨ ਮਕੈਨਿਕਸ ਦੀ ਇੱਕ ਪੁਨਰ-ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਦੇ ਤੌਰ ਤੇਸੋਧੋ

ਹੈਮਿਲਟੋਨੀਅਨ ਸਿਸਟਮਾਂ ਦਾ ਰੇਖਾਗਣਿਤਸੋਧੋ

ਪੋਆਇਸ਼ਨ ਬ੍ਰੈਕਟ ਰਾਹੀਂ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਤੱਕ ਸਰਵ ਸਧਾਰਨਕਰਨਸੋਧੋ

ਗਣਿਤਿਕ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀਸੋਧੋ

ਰੀਮਾਨੀਅਨ ਮੈਨੀਫੋਲਡਸੋਧੋ

ਸਬ-ਰੀਮਾਨੀਅਨ ਮੈਨੀਫੋਲਡਸੋਧੋ

ਪੋਆਇਸ਼ਨ ਅਲਜਬਰੇਸੋਧੋ

ਕਿਸੇ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਫੀਲਡ ਅੰਦਰ ਚਾਰਜ ਕੀਤਾ ਹੋਇਆ ਕਣਸੋਧੋ

ਕਿਸੇ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਫੀਲਡ ਅੰਦਰ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਚਾਰਜ ਕੀਤਾ ਹੋਇਆ ਕਣਸੋਧੋ

ਇਹ ਵੀ ਦੇਖੋਸੋਧੋ

ਹਵਾਲੇਸੋਧੋ

ਫੁਟਨੋਟਸਸੋਧੋ

ਸੋਰਸਸੋਧੋ

ਬਾਹਰੀ ਲਿੰਕਸੋਧੋ