ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਵਿੱਚ ਇੱਕ ਵੇਵ ਫੰਕਸ਼ਨ ਇੱਕ ਜਾਂ ਜਿਆਦਾ ਕਣਾਂ ਦੇ ਕਿਸੇ ਬੰਦ (ਆਈਸੋਲੇਟਡ) ਸਿਸਟਮ ਦੀ ਕੁਆਂਟਮ ਅਵਸਥਾ ਦਰਸਾਉਂਦਾ ਹੈ। ਸਾਰੇ ਸਿਸਟਮ ਬਾਰੇ ਜਾਣਕਾਰੀ ਇੱਕੋ ਵੇਵ ਫੰਕਸ਼ਨ ਵਿੱਚ ਹੁੰਦੀ ਹੈ, ਸਿਸਟਮ ਵਿਚਲੇ ਹਰੇਕ ਕਣ ਲਈ ਵੱਖਰਾ ਵੇਵ ਫੰਕਸ਼ਨ ਨਹੀਂ ਹੁੰਦਾ। ਇਸ ਦੀ ਵਿਆਖਿਆ ਪ੍ਰੋਬੇਬਿਲਟੀ ਐਂਪਲੀਟਿਊਡ ਵਾਲੀ ਹੈ। ਨਾਪਾਂ ਨਾਲ ਸਬੰਧਿਤ ਮਾਤਰਾਵਾਂ, ਜਿਵੇਂ ਕਿਸੇ ਕਣ ਦਾ ਔਸਤ ਮੋਮੈਂਟਮ, ਵੇਵ ਫੰਕਸ਼ਨ ਤੋਂ ਕੱਢਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਵਿੱਚ ਕੇਂਦਰੀ ਚੀਜ਼ ਹੈ ਅਤੇ ਸਾਰੀਆਂ ਅਜੋਕੀਆਂ ਥਿਊਰੀਆਂ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ ਹੈ, ਜਿਵੇਂ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੀ ਸਹਿਯੋਗੀ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ, ਭਾਵੇਂ ਇਸ ਦੀ ਵਿਆਖਿਆ ਵਿੱਚ ਫਰਕ ਹੋ ਸਕਦਾ ਹੈ। ਕਿਸੇ ਵੇਵ ਫੰਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਜਿਆਦਾ ਆਮ ਤਰੀਕੇ ਨਾਲ ਲਿਖਣ ਦਾ ਚਿੰਨ੍ਹ ਗਰੀਕ ਅੱਖਰ ψ ਜਾਂ Ψ (ਛੋਟੀ ਅਤੇ ਵੱਡੀ psi/ਸਾਈ)

ਕਿਸੇ ਸਿੰਗਲ ਸਪਿੱਨ ਤੋਂ ਬਗੈਰ ਕਣ ਲਈ ਕਲਾਸੀਕਲ ਸਿੰਪਲ ਹਾਰਮੋਨਿਕ ਗਤੀ ਅਤੇ ਕੁਆਂਟਮ ਹਾਰਮੋਨਿਕ ਔਸੀਲੇਟਰ ਧਾਰਨਾਵਾਂ ਵਿਚਕਾਰ ਤੁਲਨਾ, ਦੋਵੇਂ ਪ੍ਰਕ੍ਰਿਆਵਾਂ ਵਿੱਚ ਬਹੁਤ ਅੰਤਰ ਹੋ ਸਕਦਾ ਹੈ

ਪਰਿਭਾਸ਼ਾ

ਸੋਧੋ

ਇੱਕ ਵੇਵ (ਤਰੰਗ) ਨੂੰ ਕਿਸੇ ਭੌਤਿਕੀ ਸਿਸਟਮ ਵਿੱਚ ਕਿਸੇ ਹਲਚਲ ਦੇ ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜੋ ਸਪੇਸ ਅਤੇ ਸਮੇਂ ਦੋਹਾਂ ਵਿੱਚ “ਪੀਰਿਔਡਿਕ” (ਨਿਯਮਿਤ ਅੰਤਰਾਲ) ਵਾਲੀ ਹੁੰਦੀ ਹੈ। ਇੱਕ ਡਾਇਮੈਨਸ਼ਨ (ਅਯਾਮ) ਵਿੱਚ, ਇੱਕ ਵੇਵ ਨੂੰ ਆਮਤੌਰ ਤੇ “ਇੱਕ ਵੇਵਫੰਕਸ਼ਨ” ਦੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਪ੍ਰਸਤੁਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ:

ਜਿਵੇਂ, ψ(x,t) = A cos(kx−ωt+ ϕ)

ਜਿੱਥੇ x ਪੁਜ਼ੀਸ਼ਨ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰਦਾ ਹੈ, t ਸਮੇਂ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰਦਾ ਹੈ, ਅਤੇ A, k, ω > 0 (ਹਮੇਸ਼ਾ ਪੌਜ਼ਿਟਵ)।,ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਜੇਕਰ ਅਸੀਂ ਕਿਸੇ ਸਾਊਂਡ ਵੇਵ ਦੀ ਗੱਲ ਕਰੀਏ ਤਾਂ ψ(x,t) ਨੂੰ ਜਰੂਰ ਹੀ ਪੁਜੀਸ਼ਨ x ਅਤੇ ਸਮੇਂ t ਉੱਤੇ ਵੇਵ ਨਾਲ ਜੁੜੇ ਪ੍ਰੈੱਸ਼ਰ ਦੀ ਗੜਬੜੀ ਨਾਲ ਸਬੰਧਿਤ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਦੂਜੇ ਪਾਸੇ, ਜੇਕਰ ਅਸੀਂ ਕਿਸੇ ਪ੍ਰਕਾਸ਼ ਵੇਵ ਦੀ ਗੱਲ ਕਰਦੇ ਹੋਈਏ ਤਾਂ ψ(x,t) ਨੂੰ ਜਰੂਰ ਹੀ ਵੇਵ ਦੀ ਟਰਾਂਸਵਰਸ (ਤਿਰਛੀ) ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਪ੍ਰਸਤੁਤ ਕਰਦੇ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਜਿਵੇਂ ਇਹ ਚੰਗੀ ਤਰਾਂ ਗਿਆਤ ਹੈ ਕਿ, ਕੋਸਾਈਨ ਫੰਕਸ਼ਨ cos(θ), ਆਪਣੇ ਭਾਵ-ਅਰਥ ਵਿੱਚ ਨਿਯਮਿਤ ਅੰਤਰਾਲ ਵਾਲਾ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ θ ਦਾ ਪੀਰੀਅਡ 2π ਹੁੰਦਾ ਹੈ: ਯਾਨਿ ਕਿ, θ ਦੇ ਸਾਰੇ ਮੁੱਲਾਂ ਲਈ

cos(θ + 2π) = cos θ

ਹੁੰਦਾ ਹੈ। ਜਿਉਂ ਜਿਉਂ θ ਦਾ ਮੁੱਲ ਬਦਲਦਾ ਹੈ, ਫੰਕਸ਼ਨ ਕ੍ਰਮਵਾਰ -1 ਅਤੇ +1 ਦੇ ਘੱਟੋ-ਘੱਟ ਅਤੇ ਵੱਧੋ-ਵੱਧ ਮੁੱਲਾਂ ਦਰਮਿਆਨ ਡੋਲਦਾ (ਔਸੀਲੇਟ ਕਰਦਾ) ਹੈ।

ਇਸ ਤੋਂ ਪਤਾ ਲਗਦਾ ਹੈ ਕਿ ਵੇਵਫੰਕਸ਼ਨ ਪੁਜੀਸ਼ਨ x ਵਿੱਚ ਪੀਰੀਅਡ

λ= 2π/k

ਦੇ ਹਿਸਾਬ ਨਾਲ ਨਿਯਮਿਤ ਅੰਤਰਾਲ ਵਾਲਾ ਹੁੰਦਾ ਹੈ: ਯਾਨਿ ਕਿ, ਸਾਰੇ x ਅਤੇ t ਮੁੱਲਾਂ ਲਈ

ψ(x+λ,t) = ψ(x,t)

ਹੁੰਦਾ ਹੈ। ਹੋਰ ਅੱਗੇ, ਵੇਵਫੰਕਸ਼ਨ ਪੀਰੀਅਡ

T=2π/ω

ਦੇ ਨਾਲ t ਵਿੱਚ ਨਿਯਮਿਤ ਅੰਤਰਾਲ ਦੀ ਅਵਰਤੀ ਵਾਲਾ ਹੁੰਦਾ ਹੈ: ਯਾਨਿ ਕਿ, x ਅਤੇ t ਦੇ ਸਾਰੇ ਮੁੱਲਾਂ ਲਈ

ψ(x,t+T) = ψ(x,t)

ਹੁੰਦਾ ਹੈ।

ਅੰਤ ਵਿੱਚ, ਜਿਉਂ ਜਿਉਂ x ਅਤੇ t ਦੇ ਮੁੱਲ ਬਦਲਦੇ ਹਨ, ਵੇਵਫੰਕਸ਼ਨ ਕ੍ਰਮਵਾਰ −A ਅਤੇ +A ਦੇ ਮਿਨੀਮਮ ਤੇ ਮੈਗਜ਼ੀਮਮ ਮੁੱਲਾਂ ਦਰਮਿਆਨ ਡੋਲਦਾ ਹੈ। ਵੇਵ, λ, ਦੇ ਸਥਾਨਿਕ ਨਿਯਮਿਤ ਅੰਤਰਾਲ (ਪੀਰੀਅਡ) ਨੂੰ ਇਸ ਦੀ “ਵੇਵਲੈਂਥ” (ਤਰੰਗ-ਲੰਬਾਈ) ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਅਤੇ ਅਸਥਾਈ ਪੀਰੀਅਡ T ਨੂੰ ਇਸ ਦਾ ਪੀਰੀਅਡ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਹੋਰ ਅੱਗੇ, ਮਾਤਰਾ A ਨੂੰ ਵੇਵ-ਐਂਪਲੀਟਿਊਡ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਮਾਤਰਾ k ਨੂੰ ਵੇਵ-ਨੰਬਰ (ਤਰੰਗ-ਸੰਖਿਆ) ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਅਤੇ ਮਾਤਰਾ ω ਨੂੰ ਵੇਵ-ਐਂਗੁਲਰ-ਫਰੀਕੁਐਂਸੀ (ਤਰੰਗ-ਕੋਣਿਕ ਆਵਰਤੀ) ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਨੋਟ ਕਰੋ ਕਿ ω ਦੀਆਂ ਯੂਨਿਟਾਂ ਰੇਡੀਅਨ/ਸੈਕੰਡ ਹੁੰਦੀਆਂ ਹਨ। ਪਰੰਪਰਾਗਤ ਵੇਵ ਫਰੀਕੁਐਂਸੀ, ਸਾਈਕਲ/ਸੈਕੰਡ (ਜਿਸ ਨੂੰ ਹਰਟਜ਼ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ) ਵਿੱਚ

ν =1/T = ω/2π

ਹੁੰਦੀ ਹੈ। ਅੰਤ ਵਿੱਚ, ਸਮੀਕਰਨ ψ(x,t) = A cos(kx−ωt+ ϕ) ਵਿੱਚ ਦਿਸਣ ਵਾਲੀ ਮਾਤਰਾ ϕ ਨੂੰ ਫੇਜ਼ ਐਂਗਲ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਜੋ ਕਿਸੇ ਦਿੱਤੇ ਹੋਏ ਵਕਤ ਤੇ ਤਰੰਗ ਦੀਆਂ ਵੱਧ ਤੋਂ ਵੱਧ ਤੇ ਘੱਟ ਤੋਂ ਘੱਟ ਮਾਤਰਾਵਾਂ (ਮੈਗਜ਼ਿਮਾ ਤੇ ਮਿਨੀਮਾ) ਦੀ ਸਹੀ ਪੁਜ਼ੀਸ਼ਨ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਦਾ ਹੈ। ਅਸਲ ਵਿੱਚ, cos(θ) ਦਾ ਵੇਵ ਮੈਗਜ਼ਿਮਾ θ = j 2π ਉੱਤੇ ਵਾਪਰਦਾ ਹੈ। ਨੋਟ ਕਰੋ ਕਿ ਕੋਈ ਦਿੱਤੀ ਹੋਈ ਵੱਧ ਤੋਂ ਵੱਧ ਮਾਤਰਾ ਇਸ ਇਕੁਏਸ਼ਨ ਤੇ ਖਰੀ ਉਤਰਦੀ ਹੈ ; x = (j − ϕ/2π) λ + v t,

ਜਿੱਥੇ v = ω/k ਹੁੰਦਾ ਹੈ। ਇਸ ਤੋਂ ਪਤਾ ਲਗਦਾ ਹੈ ਕਿ ਵੱਧ ਤੋਂ ਵੱਧ ਮਾਤਰਾ, ਅਤੇ ਆਪਣੇ ਮੰਤਵ ਮੁਤਾਬਕ, ਸਾਰੀ ਦੀ ਸਾਰੀ ਵੇਵ ਵਿਲੌਸਟਿੀ ω/k ਉੱਤੇ ਪੌਜ਼ੇਟਿਵ x-ਦਿਸ਼ਾ ਵਿੱਚ ਸੰਚਾਰਿਤ ਹੁੰਦੀ ਹੈ। ਤਰਜ ਵਿਚਾਰਾਂ ਦੀ ਸਮਾਨਤਾ ਤੋਂ ਪਤਾ ਲਗਦਾ ਹੈ ਕਿ ਵੇਵ ਫੰਕਸ਼ਨ;

ψ(x, t) = A cos(−k x − ωt + ϕ) = A cos(k x + ωt − ϕ),

ਅਜਿਹਾ ਵੇਵਫੰਕਸ਼ਨ ਹੁੰਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਕਿਸੇ ਤਰੰਗ ਦਾ ਐਂਪਲੀਟਿਊਡ A ਹੁੰਦਾ ਹੈ, ਵੇਵਨੰਬਰ k ਹੁੰਦਾ ਹੈ, ਐਂਗੁਲਰ ਫਰੀਕੁਐਂਸੀ ω ਹੁੰਦੀ ਹੈ, ਅਤੇ ਫੇਜ਼ ਐਂਗਲ ϕ ਹੁੰਦਾ ਹੈ, ਜੋ ਵਿਲੌਸਟੀ ω/k ਨਾਲ ਨੈਗੈਟਿਵ x-ਦਿਸ਼ਾ ਵਿੱਚ ਸੰਚਾਰਿਤ ਹੁੰਦੀ ਹੈ।

ਇਤਿਹਾਸਿਕ ਪਿਛੋਕੜ

ਸੋਧੋ

ਮਾਡਰਨ ਥਿਊਰੀਆਂ ਅੰਦਰ ਵੇਵ ਫੰਕਸ਼ਨ ਅਤੇ ਵੇਵ ਇਕੁਏਸ਼ਨਾਂ

ਸੋਧੋ

ਪਰਿਭਾਸ਼ਾ (ਇੱਕ-ਅਯਾਮ ਵਿੱਚ ਇੱਕ ਸਪਿੱਨਹੀਣ ਕਣ)

ਸੋਧੋ

ਪੁਜੀਸ਼ਨ-ਸਪੇਸ ਵੇਵ ਫੰਕਸ਼ਨ

ਸੋਧੋ

ਮੋਮੈਂਟਮ-ਸਪੇਸ ਵੇਵ ਫੰਕਸ਼ਨ

ਸੋਧੋ

ਪੁਜੀਸ਼ਨ ਅਤੇ ਮੋਮੈਂਟਮ ਪ੍ਰਸਤੁਤੀਆਂ ਦਰਮਿਆਨ ਸਬੰਧ

ਸੋਧੋ

ਪਰਿਭਾਸ਼ਵਾਂ (ਹੋਰ ਮਾਮਲੇ)

ਸੋਧੋ

ਵਕਤ ਨਿਰਭਰਤਾ

ਸੋਧੋ

ਗੈਰ-ਸਾਪੇਖਿਕ ਉਦਾਹਰਨਾਂ

ਸੋਧੋ

ਇੱਕ ਡੱਬੇ ਵਿੱਚ ਕਣ

ਸੋਧੋ

ਸੀਮਤ ਪੁਟੈਂਸ਼ਲ ਬੈਰੀਅਰ

ਸੋਧੋ

ਕੁਆਂਟਮ ਹਾਰਮੋਨਿਕ ਔਸੀਲੇਟਰ

ਸੋਧੋ

ਹਾਈਡ੍ਰੋਜਨ ਐਟਮ

ਸੋਧੋ

ਗਣਿਤਿਕ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ

ਸੋਧੋ

ਸਰਵ ਸਧਾਰਨ ਪ੍ਰਸਤੁਤੀਆਂ

ਸੋਧੋ

ਵਿਵਰਣ

ਸੋਧੋ

ਔਂਟੌਲੋਜੀ

ਸੋਧੋ

ਇਹ ਵੀ ਦੇਖੋ

ਸੋਧੋ

ਟਿੱਪਣੀਆਂ

ਸੋਧੋ

ਨੋਟਸ

ਸੋਧੋ

ਹਵਾਲੇ

ਸੋਧੋ

ਹੋਰ ਲਿਖਤਾਂ

ਸੋਧੋ

ਬਾਹਰੀ ਲਿੰਕ

ਸੋਧੋ