ਸਮਾਨ ਅਨੁਪਾਤ
ਗਣਿਤ ਵਿੱਚ ਦੋ ਚਲ ਰਾਸ਼ੀਆਂ x ਅਤੇ y ਨੂੰ ਸਮਾਨਅਨੁਪਾਤ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਜੇ ਦਾ ਮੁੱਲ ਸਥਿਰ ਰਾਸ਼ੀ ਹੋਵੇ। ਇਸ ਹਾਲਤ 'ਚ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਕਿ ਪਹਿਲੀ ਰਾਸ਼ੀ ਦੂਜੀ ਰਾਸ਼ੀ ਦੇ ਸਮਾਨ ਅਨੁਪਾਤ ਹੈ। ਜਿਵੇਂ ਜੇ ਕੋਈ ਵਸਤੂ ਸਮਾਨ ਵੇਗ ਨਾਲ ਗਤੀ ਕਰ ਰਹੀ ਹੈ ਤਾਂ ਇਸ ਦੁਆਰਾ ਤਹਿ ਕੀਤੀ ਦੂਰੀ, ਸਮੇਂ ਦੇ ਸਮਾਨ ਅਨੁਪਾਤ ਹੋਵੇਗਾ। ਦੋ ਅਨੁਪਾਤ ਦੀ ਸਮਾਨਤਾ ਨੂੰ ਸਮਾਨ ਅਨੁਪਾਤ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਜਿਵੇਂ ਇੱਕ ਸਮਾਨ ਅਨੁਪਾਤ ਹੈ ਜਿਥੇ ਕੋਈ ਵੀ ਪਦ ਸਿਫ਼ਰ ਨਹੀਂ ਹੈ।[1]
ਗਣਨਾ
ਸੋਧੋਸਮਾਨ ਅਨੁਪਾਤ ਨੂੰ ਅਨੁਪਾਤ: ਚਿੰਨ੍ਹ ਲਿਖ ਕੇ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਕਈ ਵਾਰੀ ਇਸ ਨੂੰ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਵੀ ਲਿਖਾ ਜਾਂਦਾ ਹੈ।
ਕਿਸਮਾ
ਸੋਧੋਸਿੱਧਾ ਜਾਂ ਪ੍ਰਤੱਖ ਸਮਾਨ ਅਨੁਪਾਤ:
- ਜਿਥੇ m ਸਥਿਰ ਅੰਕ ਹੈ।
ਇਥੇ x ਅਤੇ y ਵਿੱਚ ਸਿੱਧਾ ਜਾਂ ਪ੍ਰਤੱਖ ਸਮਾਨ ਅਨੁਪਾਤ ਹੈ। ਜਿਵੇਂ ਪੈਟਰੋਲ ਦੀ ਖਪਤ ਅਤੇ ਇੱਕ ਕਾਰ ਦੁਆਰਾ ਤਹਿ ਕੀਤੀ ਗਈ ਦੂਰੀ ਇੱਕ ਸਿੱਧੇ ਸਮਾਨ ਅਨੁਪਾਤ ਦੀ ਸਥਿਤੀ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਖਰਚ ਕੀਤੀ ਗਈ ਕੁੱਲ ਰਾਸ਼ੀ ਅਤੇ ਖਰੀਦੀਆਂ ਗਈਆਂ ਵਸਤੂਆਂ ਦੀ ਸੰਖਿਆਂ ਵੀ ਸਿੱਧੇ ਸਮਾਨ ਅਨੁਪਾਤ ਦੀ ਇੱਕ ਉਦਾਹਰਣ ਹੈ।
ਗੁਣ
ਸੋਧੋਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ
ਸੋਧੋਦੋ ਰਾਸ਼ੀਆਂ ਇਸ ਤਰ੍ਹਾਂ ਵੀ ਬਦਲ ਜਾਂਦੀਆਂ ਹਨ ਕਿ ਜੇ ਇੱਕ ਰਾਸ਼ੀ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ ਤਾਂ ਦੂਸਰੀ ਰਾਸ਼ੀ ਵਿੱਚ ਕਮੀ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇੱਕ ਵਿੱਚ ਕਮੀ ਹੋਣ ਤੇ ਦੂਸਰੀ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਣ ਲਈ ਜੇ ਕਿਸੇ ਕੰਮ ਲਈ ਵੱਧ ਮਜ਼ਦੂਰ ਲਗਾਏ ਜਾਣ ਤਾਂ ਉਹ ਕੰਮ ਘੱਟ ਸਮੇਂ ਵਿੱਚ ਪੂਰਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਰਾਸ਼ੀ y ਅਤੇ x ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ ਵਿੱਚ ਹਨ ਜੇ ਉਹਨਾਂ ਵਿੱਚ ਸਥਿਰ ਅੰਕ k ਇਸ ਤਰ੍ਹਾਂ ਹੋਵੇ ਕਿ:
ਹਵਾਲੇ
ਸੋਧੋ- ↑ ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ (2015). ਗਣਿਤ. ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ. p. 216.