ਕਲਪਨਾਤਮਕ ਸੰਖਿਆ ਇੱਕ ਗੁੰਝਲਦਾਰ ਸੰਖਿਆ ਹੁੰਦੀ ਹੈ ਜਿਸਨੂੰ ਵਾਸਤਵਿਕ ਸੰਖਿਆ ਨੂੰ ਕਲਪਨਾਤਮਕ ਇਕਾਈ i, ਨਾਲ ਗੁਣਾ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖ਼ਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਕਲਪਨਾਤਮਕ ਇਕਾਈ i ਨੂੰ ਇਸਦੇ ਗੁਣ i2 = −1 ਦੁਆਰਾ ਪਰਿਭਾਸ਼ਤ ਕੀਤੀ ਜਾਂਦਾ ਹੈ।[1] ਕਾਲਪਨਿਕ ਸੰਖਿਆ bi ਦਾ ਵਰਗ ਹੈ b2। ਉਦਾਹਰਣ ਦੇ ਲਈ, 5i ਇੱਕ ਕਾਲਪਨਿਕ ਨੰਬਰ ਹੈ, ਅਤੇ ਇਸਦਾ ਵਰਗ −25। ਜ਼ੀਰੋ ਨੂੰ ਵਾਸਤਵਿਕ ਅਤੇ ਕਾਲਪਨਿਕ ਦੋਵਾਂ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ।[2]

ਮੂਲ ਰੂਪ ਵਿੱਚ ਇਹ ਸੰਕਲਪ 17 ਵੀਂ ਸਦੀ ਵਿੱਚ ਰਨੇ ਦੇਕਾਰਤ[3] ਦੁਆਰਾ ਇੱਕ ਹਾਸੋਹੀਣੇ ਪਦ ਵਜੋਂ ਘੜਿਆ ਗਿਆ ਅਤੇ ਇਸ ਨੂੰ ਕਾਲਪਨਿਕ ਜਾਂ ਬੇਕਾਰ ਮੰਨਿਆ ਜਾਂਦਾ ਸੀ ਅਤੇ ਲਿਓਨਹਾਰਡ ਇਓਲਰ ਅਤੇ ਕਾਰਲ ਫ੍ਰੀਡਰਿਕ ਗੌਸ ਦੇ ਕੰਮ ਤੋਂ ਬਾਅਦ ਇਸ ਧਾਰਨਾ ਨੂੰ ਵਿਆਪਕ ਤੌਰ ਤੇ ਪ੍ਰਵਾਨਗੀ ਮਿਲੀ ਸੀ।

ਇੱਕ ਕਾਲਪਨਿਕ ਨੰਬਰ bi ਨੂੰ ਇੱਕ ਵਾਸਤਵਿਕ ਨੰਬਰ a ਵਿੱਚ ਜੋੜਿਆ ਜਾ ਸਕਦਾ ਹੈ ਤਾਂ ਜੋ a + bi ਦੇ ਰੂਪ ਦੀ ਇੱਕ ਗੁੰਝਲਦਾਰ ਸੰਖਿਆ ਬਣਾਈ ਜਾ ਸਕੇ, ਜਿਥੇ ਵਾਸਤਵਿਕ ਨੰਬਰ a ਅਤੇ b ਨੂੰ ਕ੍ਰਮਵਾਰ, ਗੁੰਝਲਦਾਰ ਸੰਖਿਆ ਦਾ ਵਾਸਤਵਿਕ ਭਾਗ ਅਤੇ ਕਾਲਪਨਿਕ ਭਾਗ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।[4] Both the real part and the imaginary part are defined as real numbers.</ref>

ਇਤਿਹਾਸ ਸੋਧੋ

 
ਗੁੰਝਲਦਾਰ ਪਲੇਨ ਦੀ ਇੱਕ ਉਦਾਹਰਣ. ਕਾਲਪਨਿਕ ਨੰਬਰ ਲੰਬਕਾਰੀ ਕੋਆਰਡੀਨੇਟ ਧੁਰੇ ਤੇ ਹੁੰਦੇ ਹਨ.

ਹਾਲਾਂਕਿ ਯੂਨਾਨ ਦੇ ਗਣਿਤ ਸ਼ਾਸਤਰੀ ਅਤੇ ਅਲੇਗਜ਼ੈਂਡਰੀਆ ਦੇ ਇੰਜੀਨੀਅਰ ਹੀਰੋ ਨੇ ਇਨ੍ਹਾਂ ਸੰਖਿਆਵਾਂ ਦੀ ਕਲਪਨਾ ਕਰਨ ਵਾਲਾ ਪਹਿਲਾ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ,[5][6] ਰਾਫੇਲ ਬੋਮਬੇਲੀ ਨੇ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਸੰਨ 1572 ਵਿੱਚ ਗੁੰਝਲਦਾਰ ਸੰਖਿਆ ਦੀ ਗੁਣਾ ਲਈ ਨਿਯਮ ਨਿਰਧਾਰਤ ਕੀਤੇ। ਸੰਕਲਪ ਪਹਿਲਾਂ ਛਪਾਈ ਵਿੱਚ ਆ ਗਿਆ ਹੋਇਆ ਸੀ, ਉਦਾਹਰਣ ਵਜੋਂ ਗੀਰੋਲਾਮੋ ਕਾਰਡਾਨੋ ਦੇ ਕੰਮ ਵਿੱਚ। ਉਸ ਸਮੇਂ ਕਾਲਪਨਿਕ ਸੰਖਿਆਵਾਂ, ਅਤੇ ਨਾਲ ਹੀ ਨਕਾਰਾਤਮਕ ਸੰਖਿਆਵਾਂ ਨੂੰ ਬਹੁਤ ਥੋੜ੍ਹਾ ਸਮਝਿਆ ਜਾਂਦਾ ਸੀ ਅਤੇ ਕੁਝ ਤਾਂ ਕਲਪਿਤ ਜਾਂ ਬੇਕਾਰ ਵੀ ਸਮਝਦੇ ਸੀ, ਜਿਸ ਤਰ੍ਹਾਂ ਕਦੇ ਜ਼ੀਰੋ ਨੂੰ ਸਮਝਦੇ ਸੀ। ਬਹੁਤ ਸਾਰੇ ਹੋਰ ਗਣਿਤ ਵਿਗਿਆਨੀ ਕਲਪਨਾਤਮਕ ਸੰਖਿਆਵਾਂ ਦੀ ਵਰਤੋਂ ਨੂੰ ਅਪਣਾਉਣ ਵਿੱਚ ਢਿੱਲੇ ਸਨ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ

ਰਨੇ ਦੇਕਾਰਤ ਵੀ ਸ਼ਾਮਲ ਸੀ, ਜਿਸ ਨੇ ਇਨ੍ਹਾਂ ਬਾਰੇ ਆਪਣੀ ਲਾ ਜਿਊਮਿਤਰੀ ਵਿੱਚ ਲਿਖਿਆ ਸੀ, ਜਿੱਥੇ ਕਲਪਨਾਤਮਕ ਪਦ ਦੀ ਵਰਤੋਂ ਛੁਟਪਣ ਦੇ ਲਹਿਜੇ ਵਿੱਚ ਕੀਤੀ ਗਈ ਸੀ।[7]

ਲਿਓਨਹਾਰਡ ਇਓਲਰ (1707– 1783) ਅਤੇ ਕਾਰਲ ਫ੍ਰੈਡਰਿਕ ਗੌਸ (1777–1855) ਦੇ ਕੰਮ ਤਕ ਕਾਲਪਨਿਕ ਸੰਖਿਆਵਾਂ ਦੀ ਵਰਤੋਂ ਵਿਆਪਕ ਰੂਪ ਵਿੱਚ ਸਵੀਕਾਰ ਨਹੀਂ ਕੀਤੀ ਗਈ ਸੀ। ਇੱਕ ਪਲੇਨ ਵਿੱਚ ਬਿੰਦੂਆਂ ਦੇ ਰੂਪ ਵਿੱਚ ਗੁੰਝਲਦਾਰ ਸੰਖਿਆਵਾਂ ਦੀ ਜਿਓਮੈਟ੍ਰਿਕ ਮਹੱਤਤਾ ਦਾ ਪਹਿਲਾਂ ਵੇਰਵਾ ਕੈਸਪਰ ਵੈੱਸਲ (1745–1818) ਦੁਆਰਾ ਦਿੱਤਾ ਗਿਆ ਸੀ।[8]

ਹਵਾਲੇ ਸੋਧੋ

  1. Uno Ingard, K. (1988). "Chapter 2". Fundamentals of Waves and Oscillations. Cambridge University Press. p. 38. ISBN 0-521-33957-X.
  2. Sinha, K.C. (2008). A Text Book of Mathematics Class XI (Second ed.). Rastogi Publications. p. 11.2. ISBN 978-81-7133-912-9.
  3. Giaquinta, Mariano; Modica, Giuseppe (2004). Mathematical Analysis: Approximation and Discrete Processes (illustrated ed.). Springer Science & Business Media. p. 121. ISBN 978-0-8176-4337-9. Extract of page 121
  4. Aufmann, Richard; Barker, Vernon C.; Nation, Richard (2009). College Algebra: Enhanced Edition (6th ed.). Cengage Learning. p. 66. ISBN 1-4390-4379-5.
  5. Hargittai, István (1992). Fivefold symmetry (2nd ed.). World Scientific. p. 153. ISBN 981-02-0600-3.
  6. Roy, Stephen Campbell (2007). Complex numbers: lattice simulation and zeta function applications. Horwood. p. 1. ISBN 1-904275-25-7.
  7. Descartes, René, Discourse de la Méthode … (Leiden, (Netherlands): Jan Maire, 1637), appended book: La Géométrie, book three, p. 380. From page 380: "Au reste tant les vrayes racines que les fausses ne sont pas tousjours reelles; mais quelquefois seulement imaginaires; c'est a dire qu'on peut bien tousjours en imaginer autant que jay dit en chasque Equation; mais qu'il n'y a quelquefois aucune quantité, qui corresponde a celles qu'on imagine, comme encore qu'on en puisse imaginer trois en celle cy, x3 – 6xx + 13x – 10 = 0, il n'y en a toutefois qu'une reelle, qui est 2, & pour les deux autres, quoy qu'on les augmente, ou diminue, ou multiplie en la façon que je viens d'expliquer, on ne sçauroit les rendre autres qu'imaginaires." (Moreover, the true roots as well as the false [roots] are not always real; but sometimes only imaginary [quantities]; that is to say, one can always imagine as many of them in each equation as I said; but there is sometimes no quantity that corresponds to what one imagines, just as although one can imagine three of them in this [equation], x3 – 6xx + 13x – 10 = 0, only one of them however is real, which is 2, and regarding the other two, although one increase, or decrease, or multiply them in the manner that I just explained, one would not be able to make them other than imaginary [quantities].)
  8. Rozenfeld, Boris Abramovich (1988). "Chapter 10". A history of non-euclidean geometry: evolution of the concept of a geometric space. Springer. p. 382. ISBN 0-387-96458-4.