ਨੋਈਥਰ ਦੀ (ਪਹਿਲੀ) ਥਿਊਰਮ ਕਹਿੰਦੀ ਹੈ ਕਿ ਕਿਸੇ ਭੌਤਿਕੀ ਸਿਸਟਮ ਦੇ ਕਾਰਜ ਦੀ ਹਰੇਕ ਡਿੱਫਰੈਂਸ਼ੀਏਬਲ ਸਮਰੂਪਤਾ ਇੱਕ ਸੁਰੱਖਿਅਤਾ ਨਿਯਮ ਨਾਲ ਸਬੰਧਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਥਿਊਰਮ ਨੂੰ 1915 ਵਿੱਚ ਜਰਮਨੀ ਦੇ ਗਣਿਤ ਸ਼ਾਸਤਰੀ ਐੱਮੀ ਨੋਈਥਰ ਦੁਆਰਾ ਸਾਬਤ ਕੀਤਾ ਗਿਆ ਸੀ ਅਤੇ 1918 ਵਿੱਚ ਛਾਪੀ ਗਈ ਸੀ। ਕਿਸੇ ਭੌਤਿਕੀ ਸਿਸਟਮ ਦਾ ਕਾਰਜ (ਐਕਸ਼ਨ) ਇੱਕ ਲਗਰੇਂਜੀਅਨ ਫੰਕਸ਼ਨ ਦਾ ਟਾਈਮ ਉੱਤੇ ਇੰਟਗਰਲ ਹੁੰਦਾ ਹੈ (ਜੋ ਕਿਸੇ ਲਗਰੇਂਜੀਅਨ ਡੈੱਨਸਿਟੀ ਫੰਕਸ਼ਨ ਦਾ ਸਪੇਸ ਉੱਤੇ ਇੰਟਗਰਲ ਹੋ ਵੀ ਸਕਦਾ ਹੈ ਤੇ ਨਹੀਂ ਵੀ ਹੋ ਸਕਦਾ), ਜਿਸ ਤੋਂ ਲੀਸਟ ਐਕਸ਼ਨ (ਘੱਟੋ-ਘੱਟ ਕਾਰਜ) ਦੇ ਸਿਧਾਂਤ ਰਾਹੀਂ ਸਿਸਟਮ ਦਾ ਵਰਤਾਓ ਨਿਰਧਾਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਐਮੀ ਨੋਈਥਰ ਇੱਕ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਜਰਮਨ ਗਣਿਤ ਸ਼ਾਸਤਰੀ ਸੀ ਜਿਸਨੂੰ ਅਮੂਰਤ ਅਲਜਬਰੇ ਅਤੇ ਸਿਧਾਂਤਕ ਭੌਤਿਕ ਵਿਗਿਆਨ ਪ੍ਰਤਿ ਉਸਦੇ ਆਪਣੇ ਤਰਥਲੀ ਮਚਾਉਣ ਵਾਲੇ ਯੋਗਦਾਨਾਂ ਸਦਕਾ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ

ਨੋਈਥਰ ਦੀ ਥਿਊਰਮ ਨੂੰ ਸਿਧਾਂਤਕ ਭੌਤਿਕ ਵਿਗਿਆਨ ਅਤੇ ਤਬਦੀਲੀਆਂ ਦੇ ਹਿਸਾਬ ਕਿਤਾਬ (ਵੇਰੀਏਸ਼ਨਾਂ ਦੇ ਕੈਲਕੁਲਸ) ਵਿੱਚ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਲਗਰੇਂਜੀਅਨ ਅਤੇ ਹੈਮਿਲਟੋਨੀਅਨ ਮਕੈਨਿਕਸ (ਜੋ ਕ੍ਰਮਵਾਰ 1788 ਅਤੇ 1833 ਵਿੱਚ ਵਿਕਸਿਤ ਕੀਤੇ ਗਏ) ਵਿੱਚ ਗਤੀ ਦੇ ਸਥਿਰਾਂਕਾਂ ਉੱਤੇ ਫਾਰਮੂਲਾ ਸੂਤਰੀਕਰਨਾਂ ਦਾ ਇੱਕ ਸਰਵ ਸਧਾਰਨਕਰਨ, ਅਜਿਹੇ ਸਿਸਟਮਾਂ ਉੱਤੇ ਲਾਗੂ ਨਹੀਂ ਹੁੰਦਾ ਜੋ ਇਕੱਲੇ ਲਗਰੇਂਜੀਅਨ ਨਾਲ ਹੀ ਮਾਡਲ-ਬੱਧ ਨਹੀਂ ਕੀਤੇ ਜਾ ਸਕਦੇ (ਯਾਨਿ ਕਿ ਇੱਕ ਰੇਲੀਘ ਅਲੋਪਤਾ ਫੰਕਸ਼ਨ ਨਾਲ)। ਖਾਸ ਤੌਰ 'ਤੇ, ਨਿਰੰਤਰਤਾ ਸਮਰੂਪਤਾਵਾਂ ਵਾਲੇ ਅਲਪ ਛਿਣ ਵਾਲੇ ਸਿਸਟਮਾਂ ਲਈ ਜਰੂਰੀ ਨਹੀਂ ਹੈ ਕਿ ਉਹ ਕਿਸੇ ਸੁਰੱਖਿਅਤਾ ਨਿਯਮ ਨਾਲ ਸਬੰਧ ਰੱਖਣ।[1]

ਹਵਾਲੇ

ਸੋਧੋ
  1. Noether, E. (1918). "Invariante Variationsprobleme". Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse. 1918: 235–257.