ਭੌਤਿਕ ਵਿਗਿਆਨ ਵਿੱਚ, ਗੇਜ ਥਿਊਰੀ ਫੀਲਡ ਥਿਊਰੀ ਦੀ ਇੱਕ ਅਜਿਹੀ ਕਿਸਮ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਵਿੱਚ ਸਥਾਨਿਕ (ਲੋਕਲ) ਪਰਿਵਰਤਨਾਂ ਦੇ ਇੱਕ ਨਿਰੰਤਰ ਗਰੁੱਪ ਅਧੀਨ ਲਗਰਾਂਜੀਅਨ ਇਨਵੇਰੀਅੰਟ (ਸਥਿਰ) ਰਹਿੰਦਾ ਹੈ।

ਸ਼ਬਦ ਗੇਜ ਲਗਰਾਂਜੀਅਨ ਵਿੱਚ ਅਜ਼ਾਦੀ ਦੀਆਂ ਅਤਿਰਿਕਤ ਡਿਗਰੀਆਂ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦਾ ਹੈ। ਸੰਭਵ ਗੇਜਾਂ ਦਰਮਿਆਨ ਪਰਿਵਰਤਨ, ਜਿਹਨਾਂ ਨੂੰ ਗੇਜ ਪਰਿਵਰਤਨ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਇੱਕ ਲਾਈ ਗਰੁੱਪ ਰਚਦੇ ਹਨ- ਜਿਸ ਵੱਲ ਨੂੰ ਥਿਊਰੀ ਦਾ ਸਮਿੱਟਰੀ ਗਰੁੱਪ ਜਾਂ ਗੇਜ ਗਰੁੱਪ ਇਸ਼ਾਰਾ ਕਰਦਾ ਹੈ। ਕਿਸੇ ਵੀ ਲਾਈ ਗਰੁੱਪ ਨਾਲ ਗਰੁੱਪ ਜਨਰੇਟਰਾਂ ਦਾ ਸਬੰਧਤ ਲਾਈ ਅਲਜਬਰਾ ਹੁੰਦਾ ਹੈ। ਹਰੇਕ ਗਰੁੱਪ ਜਨਰੇਟਰ ਵਾਸਤੇ ਇੱਕ ਸਬੰਧਤ ਵੈਕਟਰ ਫੀਲਡ ਪੈਦਾ ਹੁੰਦੀ ਹੈ ਜਿਸਨੂੰ ਗੇਜ ਫੀਲਡ ਕਹਿੰਦੇ ਹਨ। ਲਗਰਾਂਜੀਅਨ ਵਿੱਚ ਗੇਜ ਫੀਲਡਾਂ ਸ਼ਾਮਿਲ ਕੀਤੀਆਂ ਗਈਆਂ ਹਨ ਤਾਂ ਜੋ ਸਥਾਨਿਕ ਸਮੂਹ ਪਰਿਵਰਤਨਾਂ ਅਧੀਨ ਇਸਦੀ ਸਥਿਰਤਾ ਯਕੀਨੀ ਰਹੇ (ਜਿਸਨੂੰ ਗੇਜ ਇਨਵੇਰੀਅੰਸ ਕਹਿੰਦੇ ਹਨ)। ਜਦੋਂ ਅਜਿਹੀ ਕੋਈ ਥਿਊਰੀ ਨੂੰ ਕੁਆਂਟਾਇਜ਼ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਗੇਜ ਫੀਲਡਾਂ ਦੇ ਕੁਆਂਟਿਆਂ ਨੂੰ ਗੇਜ ਬੋਸੌਨ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਜੇਕਰ ਸਮਿੱਟਰੀ ਗਰੁੱਪ ਗੈਰ-ਵਟਾਂਦਰਾਤਮਿਕ (ਨੌਨ-ਕਮਿਊਟੇਟਿਵ) ਹੋਵੇ, ਤਾਂ ਗੇਜ ਥਿਊਰੀ ਨੂੰ ਗੈਰ-ਅਬੇਲੀਅਨ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਜਿਸਦੀ ਆਮ ਉਦਾਹਰਨ ਯਾਂਗ-ਮਿਲਜ਼ ਥਿਊਰੀ ਹੈ।

ਇਤਿਹਾਸ ਅਤੇ ਮਹੱਤਤਾਸੋਧੋ

ਵਿਵਰਣਸੋਧੋ

ਸੰਸਾਰਿਕ ਅਤੇ ਸਥਾਨਿਕ ਸਮਰੂਪਤਾਵਾਂਸੋਧੋ

ਸੰਸਾਰਿਕ ਸਮਰੂਪਤਾਵਾਂ ਦੀ ਉਦਾਹਰਨਸੋਧੋ

ਸਥਾਨਿਕ ਸਮਰੂਪਤਾਵਾਂ ਦਰਸਾਉਣ ਲਈ ਫਾਈਬਰ ਬੰਡਲਾਂ ਦੀ ਵਰਤੋਂਸੋਧੋ

ਗੇਜ ਫੀਲਡਾਂਸੋਧੋ

ਭੌਤਿਕੀ ਪ੍ਰਯੋਗਸੋਧੋ

ਨਿਰੰਤ੍ਰਤਾ ਥਿਊਰੀਆਂਸੋਧੋ

ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀਆਂਸੋਧੋ

ਕਲਾਸੀਕਲ ਗੇਜ ਥਿਊਰੀਸੋਧੋ

ਕਲਾਸੀਕਲ ਇਲੈਕਟ੍ਰੋਮੈਗਨਟਿਜ਼ਮਸੋਧੋ

ਇੱਕ ਉਦਾਹਰਨ: ਸਕੇਲਰ O(n) ਗੇਜ ਥਿਊਰੀਸੋਧੋ

ਗੇਜ ਫੀਲਡ ਲਈ ਯਾਂਗ-ਮਿਲਜ਼ ਲਗਰਾਂਜੀਅਨਸੋਧੋ

ਇੱਕ ਉਦਾਹਰਨ: ਇਲੈਕਟ੍ਰੋਡਾਇਨਾਮਿਕਸਸੋਧੋ

ਗਣਿਤਿਕ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀਸੋਧੋ

ਗੇਜ ਥਿਊਰੀਆਂ ਦੀ ਕੁਆਂਟਾਇਜ਼ੇਸ਼ਨਸੋਧੋ

ਤਰੀਕੇ ਅਤੇ ਉਦੇਸ਼ਸੋਧੋ

ਵਿਸੰਗਤੀਆਂਸੋਧੋ

ਸ਼ੁੱਧ ਗੇਜਸੋਧੋ