ਚਾਰਜ ਡੈਂਸਟੀ
ਇਲੈਕਟ੍ਰੋਮੈਗਨੇਟਿਜ਼ਮ ਅੰਦਰ, ਚਾਰਜ ਡੈਂਸਟੀ ਪ੍ਰਤਿ ਯੂਨਿਟ ਸਪੇਸ ਦੇ ਵੌਲੀਊਮ ਦੇ ਇਲੈਕਟ੍ਰਿਕ ਚਾਰਜ ਦਾ ਇੱਕ ਨਾਪ ਹੁੰਦੀ ਹੈ।
ਕਿਉਂਕਿ ਇੱਕ ਚਾਰ ਹਮੇਸ਼ਾ ਹੀ ਬੁਨਿਆਦੀ ਚਾਰਜ e ਦੇ ਮਲਟੀਪਲਾਂ (ਗੁਣਾਂਕਾਂ) ਦੇ ਰੂਪ ਵਿੱਚ ਹੀ ਮੌਜੂਦ ਹੋ ਸਕਦਾ ਹੈ, ਇਸਲਈ ਚਾਰਜ ਵਿਸਥਾਰ-ਵੰਡ ਹਮੇਸ਼ਾ ਹੀ ਡਿਸਕ੍ਰੀਟ (ਅਨਿਰੰਤਰ) ਰਹਿੰਦੀ ਹੈ। ਫੇਰ ਵੀ ਹਮੇਸ਼ਾ ਹੀ ਡਿਸਕ੍ਰੀਟ ਚਾਰਜਾਂ ਦੇ ਨਿਯਮਾਂ (ਟਰਮਾਂ) ਵਿੱਚ ਕੰਮ ਕਰਨਾ ਗੈਰ-ਪ੍ਰੈਕਟੀਕਲ ਰਹਿੰਦਾ ਹੈ। ਉਦਾਹਰਨ ਦੇ ਤੌਰ 'ਤੇ, ਕਿਸੇ ਚਾਰਜ ਕੀਤੇ ਹੋਏ ਕੰਡਕਟਰ ਦੀ ਸਰਫੇਸ (ਸਤਹਿ) ਉੱਤੇ, ਅਸੀਂ ਮਾਈਕ੍ਰੋਸਕੋਪਿਕ (ਸੂਖਮ) ਚਾਰਜ ਕੀਤੇ ਹੋਏ ਰਚਣਹਾਰਿਆਂ ਦੀ ਸਥਿਤੀਆਂ (ਲੋਕੇਸ਼ਨਾਂ) ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ ਚਾਰਜ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ (ਵਿਸ਼ੇਸ਼ ਤੌਰ 'ਤੇ) ਨਹੀਂ ਦਰਸਾ ਸਕਦੇ। ਫੇਰ ਵੀ, ਅਸੀਂ ਕੰਡਕਟਰ ਦੀ ਸਤਹਿ ਉੱਤੇ ਇੱਕ ਛੋਟਾ ਏਰੀਆ ਐਲੀਮੈਂਟ ΔS ਲੈ ਸਕਦੇ ਹਾਂ। ਇਹ ਏਰੀਆ ਐਲੀਮੈਂਟ ਮੈਕ੍ਰੋਸਕੋਪਿਕ ਪੈਮਾਨੇ ਉੱਤੇ ਬਹੁਤ ਛੋਟਾ ਹੁੰਦਾ ਹੈ, ਪਰ ਬਹੁਤ ਸਾਰੇ ਇਲੈਕਟ੍ਰੌਨਾਂ ਨੂੰ ਸ਼ਾਮਿਲ ਕਰਨ ਵਾਸਤੇ ਕਾਫੀ ਵੱਡਾ ਹੁੰਦਾ ਹੈ। ਜੇਕਰ ΔQ ਇਸ ਐਲੀਮੈਂਟ ਉੱਤੇ ਚਾਰਜ ਦੀ ਮਾਤਰਾ ਹੋਵੇ, ਤਾਂ ਅਸੀਂ ਏਰੀਆ ਐਲੀਮੈਂਟ ਉੱਤੇ ਸਰਫੇਸ ਚਾਰਜ ਡੈਂਸਟੀ σ(ਸਿਗਮਾ) ਨੂੰ ਇਸ ਤਰਾਂ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦੇ ਹਾਂ;
- σ = (ΔQ)/(ΔS)
ਕੰਡਕਟਰ ਦੀ ਸਤਹਿ ਦੇ ਵੱਖਰੇ ਬਿੰਦੂਆਂ ਉੱਤੇ ਵੀ ਅਸੀਂ ਇਸੇ ਪ੍ਰੋਸੈੱਸ ਨੂੰ ਰਪੀਟ ਕਰਦੇ ਹਾਂ ਅਤੇ ਇਸ ਤਰ੍ਹਾਂ ਇੱਕ ਕੰਟੀਨਿਊਸ ਫੰਕਸ਼ਨ σ ਉੱਤੇ ਪਹੁੰਚਦੇ ਹਾਂ, ਜਿਸਨੂੰ ਸਰਫੇਸ ਚਾਰਜ ਡੈਂਸਟੀ ਕਹਿੰਦੇ ਹਨ।
- ਮਾਈਕ੍ਰੋਸਕੋਪਿਕ ਲੈਵਲ ਉੱਤੇ, ਚਾਰਜ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ ਕੰਟੀਨਿਊਸ ਨਹੀਂ ਹੁੰਦੀ, ਕਿਉਂਕਿ ਉੱਥੇ ਦਰਮਿਆਨ ਵਾਲੀ ਸਪੇਸ ਦੁਆਰਾ ਵੱਖਰੇ ਕੀਤੇ ਹੋਏ ਡਿਸਕ੍ਰੀਟ ਚਾਰਜ ਹੁੰਦੇ ਹਨ, ਜਿੱਥੇ ਕੋਈ ਚਾਰਜ ਨਹੀਂ ਹੁੰਦਾ। ਇਸ ਲਈ, ਸਿਗਮਾ σ ਅਜਿਹੀ ਮੈਕ੍ਰੋਸਕੋਪਿਕ ਸਰਫੇਸ ਚਾਰਜ ਡੈਂਸਟੀ ਪ੍ਰਸਤੁਤ ਕਰਦਾ ਹੈ ਜੋ ਇੱਕ ਏਰੀਆ ਐਲੀਮੈਂਟ ΔS ਉੱਤੇ ਮਾਈਕ੍ਰੋਸਕਿਪੋਕ ਚਾਰਜ ਡੈਂਸਟੀ ਦੀ ਔਸਤ ਦੇ ਤੌਰ 'ਤੇ ਪੱਧਰੀ ਕੀਤੀ ਗਈ ਹੁੰਦੀ ਹੈ, ਜੋ ਮੈਕ੍ਰੋਸਕੋਪਿਕ ਤੌਰ 'ਤੇ ਸੂਖਮ ਹੁੰਦੀ ਹੈ, ਪਰ ਮਾਈਕ੍ਰੋਸਕੋਪਿਕ ਤੌਰ 'ਤੇ ਵਿਸ਼ਾਲ ਹੁੰਦੀ ਹੈ।
ਇਸੇ ਅਧਾਰ ਉੱਤੇ, ਜਦੋਂ ਚਾਰਜ ਕਿਸੇ ਲਾਈਨ ਦੇ ਨਾਲ ਨਾਲ ਡਿਸਟ੍ਰੀਬਿਊਟ ਕੀਤਾ ਹੁੰਦਾ ਹੈ, ਭਾਵੇਂ ਲਾਈਨ ਸਿੱਧੀ ਹੋਵੇ ਜਾਂ ਮੁੜੀ ਹੋਈ ਵਕਰ ਦੇ ਰੂਪ ਵਿੱਚ ਹੋਵੇ, ਅਸੀਂ ਪਰਿਭਾਸ਼ਿਤ ਕਰ ਸਕਦੇ ਹਾਂ ਕਿ;
ਲੀਨੀਅਰ ਚਾਰਜ ਡੈਂਸਟੀ, λ= (ΔQ)/(Δl)
ਜਿੱਥੇ Δl ਮਾਈਕ੍ਰੋਸਕੋਪਿਕ ਤੌਰ 'ਤੇ ਤਾਰ ਦਾ ਸੂਖਮ ਲਾਈਨ ਐਲੀਮੈਂਟ ਹੈ, ਜੋ ਬਹੁਤ ਜਿਆਦਾ ਸੰਖਿਆ ਵਿੱਚ ਮਾਈਕ੍ਰੋਸਕੋਪਿਕ ਚਾਰਜਡ ਰਚਣਹਾਰੇ ਕਣ ਸ਼ਾਮਿਲ ਕਰਦਾ ਹੈ ਅਤੇ ΔQ ਓਸ ਲਾਈਨ ਐਲੀਮੈਂਟ ਵਿੱਚ ਸਾਂਭਿਆ ਚਾਰਜ ਦਰਸਾਉਂਦਾ ਹੈ। λਦੀਆਂ ਯੂਨਿਟਾਂ ਕੂਲੌਂਬ/ਮੀਟਰ ਹਨ।
- ਵੌਲੀਊਮ ਚਾਰਜ ਡੈਂਸਟੀ ਇਸੇ ਅੰਦਾਜ਼ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਪਰਿਭਾਸ਼ਿਤ ਹੁੰਦੀ ਹੈ;
- ρ= (ΔQ)/(ΔV)
ਜਿੱਥੇ (ΔQ) ਮੈਕ੍ਰੋਸਕੋਪਿਕ ਤੌਰ 'ਤੇ ਛੋਟੇ ਵੌਲੀਊਮ ਐਲੀਮੈਂਟ ΔV ਵਿੱਚ ਸ਼ਾਮਿਲ ਹੋਇਆ ਚਾਰਜ ਹੁੰਦਾ ਹੈ ਜੋ ਬਹੁਤ ਸਾਰੇ ਰਚਣਹਾਰੇ ਚਾਰਜਡ ਕਣ ਰੱਖਦਾ ਹੈ। ਰੋ (ρ) ਦੀਆਂ ਯੂਨਿਟਾਂ ਕੂਲੌਂਬ/(ਕਿਊਬਿਕ ਮੀਟਰ) ਹਨ।
ਧਿਆਨ ਦੇਓ ਕਿ ਨਿਰੰਤਰ ਚਾਰਜ ਵਿਸਥਾਰ-ਵੰਡ ਦੀ ਧਾਰਨਾ ਨਿਰੰਤਰ ਪੁੰਜ ਵਿਸਥਾਰ-ਵੰਡ ਦੀ ਮਕੈਨਿਕਸ ਵਾਲੀ ਧਾਰਨਾ ਨਾਲ ਮਿਲਦੀ ਹੈ। ਉਦਾਹਰਨ ਦੇ ਤੌਰ 'ਤੇ, ਜਦੋਂ ਅਸੀਂ ਕਿਸੇ ਤਰਲ ਪਦਾਰਥ ਦੀ ਡੈਂਸਟੀ ਬਾਰੇ ਗੱਲ ਕਰਦੇ ਹਾਂ, ਤਾਂ ਅਸੀਂ ਇਸਦੀ ਮੈਕ੍ਰੋਸਕੋਪਿਕ ਡੈਂਸਟੀ ਨੂੰ ਇੱਕ ਨਿਰੰਤਰ ਫਲੂਇਡ ਦੇ ਤੌਰ 'ਤੇ ਲੈ ਕੇ ਗੱਲ ਕਰ ਰਹੇ ਹੁੰਦੇ ਹਾਂ ਅਤੇ ਉਸਦੇ ਡਿਸਕ੍ਰੀਟ ਰਚਣਹਾਰੇ ਤੱਤਾਂ ਨੂੰ ਇਗਨੋਰ ਕਰ ਰਹੇ ਹੁੰਦੇ ਹਾਂ।
ਨਿਰੰਤਰ ਚਾਰਜ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ ਕਾਰਨ ਬਲ
ਸੋਧੋਕਿਸੇ ਨਿਰੰਤਰ ਚਾਰਜ ਵਿਸਥਾਰ-ਵੰਡ ਕਾਰਣ ਫੋਰਸ ਨੂੰ ਡਿਸਕ੍ਰੀਟ ਚਾਰਜਾਂ ਦੇ ਕਿਸੇ ਸਿਸਟਮ ਦੇ ਲਈ ਹੀ ਵਰਤੇ ਜਾਂਦੇ ਤਰੀਕੇ ਨਾਲ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
- ਮੰਨ ਲਓ ਸਪੇਸ ਵਿੱਚ ਕੋਈ ਨਿਰੰਤਰ ਚਾਰਜ ਵਿਸਥਾਰ-ਵੰਡ ਇੱਕ ਵੌਲੀਊਮ ਚਾਰਜ ਡੈਂਸਟੀ ρ ਰੱਖਦੀ ਹੈ। ਕਿਸੇ ਢੁਕਵੇਂ ਚੁਣੇ ਗਏ ਮੂਲ-ਬਿੰਦੂ O (ਉਰਿਜਨ) ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ, ਚਾਰਜ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ ਅੰਦਰ ਕਿਸੇ ਬਿੰਦੂ ਉੱਤੇ ਪੁਜੀਸ਼ਨ ਵੈਕਟਰ ਨੂੰ ri ਮੰਨ ਲੈਂਦੇ ਹਾਂ। ਵੌਲੀਊਮ ਚਾਰਜ ਡੈਂਸਟੀ ρ, ਇਸ ਪੁਜੀਸ਼ਨ ਵੈਕਟਰ ri ਦਾ ਇੱਕ ਫੰਕਸ਼ਨ ਹੋਵੇਗੀ, ਯਾਨਿ ਕਿ, ਇਹ ਬਿੰਦੂ ਤੋਂ ਬਿੰਦੂ ਤੱਕ (ਇੱਕ ਸਥਾਨ ਤੋਂ ਦੂਜੇ ਸਥਾਨ ਤੱਕ) ਤਬਦੀਲ ਹੁੰਦੀ ਹੋ ਸਕਦੀ ਹੈ। ਚਾਰਜ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ ਨੂੰ ਛੋਟੇ ΔV ਸਾਈਜ਼ਾਂ ਦੇ ਵੌਲੀਊਮ ਐਲੀਮੈਂਟਾਂ ਵਿੱਚ ਵੰਡ ਦਿਓ। ਇਸ ਤਰ੍ਹਾਂ ਇਸ ਵੌਲੀਊਮ ਐਲੀਮੈਂਟ ਅੰਦਰ ਚਾਰਜ ਇਹ ਰਹੇਗਾ;
- (ΔQ) = ρ(ΔV)
- ਹੁਣ ਪੁਜੀਸ਼ਨ ਵੈਕਟਰ r₀ ਰੱਖਣ ਵਾਲਾ ਕੋਈ ਆਮ ਬਿੰਦੂ P ਚਾਰਜ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ ਦੇ ਅੰਦਰ ਜਾਂ ਬਾਹਰ ਲਓ।
- ਕੂਲੌਂਬ ਦਾ ਨਿਯਮ ਵਰਤਦੇ ਹੋਏ, P ਉੱਤੇ ਕਿਸੇ ਸੂਖਮ ਟੈਸਟ ਚਾਰਜ ਕਿਆਊ₀ (q₀) ਉੱਤੇ ਚਾਰਜ ਐਲੀਮੈਂਟ ΔQ ਕਾਰਣ ਫੋਰਸ ਇਹ ਹੋਵੇਗਾ;
- dF = q₀ (ΔQ)/(4πε₀ r’2) = q₀ (ρ(ΔV))/(4πε₀ r’2)
- ਜਿੱਥੇ r’ = r₀ - ri ਹੁੰਦਾ ਹੈ।
- ਸੁਪਰਪੁਜੀਸ਼ਨ ਸਿਧਾਂਤ ਮੁਤਾਬਿਕ, ਸਾਰੇ ਦੇ ਸਾਰੇ ਵੌਲਿਊਮ ਦੀ ਚਾਰਜ ਵਿਸਥਾਰ-ਵੰਡੇ ਕਾਰਨ ਬਣਿਆ ਕੁੱਲ ਫੋਰਸ ਵੱਖਰੇ ਵੱਖਰੇ ਵੌਲੀਊਮ ਐਲੀਮੈਂਟਾਂ ਕਾਰਨ ਫੋਰਸਾਂ ਉੱਤੇ ਜੋੜ ਕਰਕੇ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ;
- F = ∑ਸਾਰੇ ΔV ਉੱਤੇ q₀ (ρ(ΔV))/(4πε₀ r’2)
ਜਦੋਂ ΔV ➙ 0 ਨੇੜੇ ਪਹੁੰਚਣ ਲੱਗਦਾ ਹੈ ਤਾਂ, ਅਸੀਂ ਕੁੱਲ ਫੋਰਸ ਨੂੰ ਜੋੜ ਦੀ ਜਗਹ ਇੰਟਗ੍ਰਲ ਬਣਾ ਸਕਦੇ ਹਾਂ ਤੇ ਇੰਝ ਲਿਖ ਸਕਦੇ ਹਾਂ;
- F = ∫ V q₀ (ρ(ΔV))/(4πε₀ r’2) = F
- F= q₀/(4πε₀)∫ V (ρ(ΔV))/ (r’2)
ਇਸੇ ਤਰਾਂ ਅਸੀਂ, ਚਾਰਜ ਦੀ ਨਿਰੰਤਰ ਲਾਈਨ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ ਕਾਰਨ ਪੈਦਾ ਹੋਏ ਕੁੱਲ ਫੋਰਸ ਨੂੰ ਲਿਖ ਸਕਦੇ ਹਾਂ;
- F= q₀/(4πε₀)∫ V (ρ(Δl))/ (r’2)
ਅਤੇ ਚਾਰਜ ਦੇ ਨਿਰੰਤਰ ਸਰਫੇਸ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ ਕਾਰਣ ਪੇਦਾ ਹੋਏ ਫੋਰਸ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖ ਸਕਦੇ ਹਾਂ;
- F= q₀/(4πε₀)∫ V (ρ(ΔS))/ (r’2)
ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਵਿੱਚ ਚਾਰਜ ਡੈਂਸਟੀ
ਸੋਧੋਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਵਿੱਚ, ਚਾਰਜ ਡੈਂਸਟੀ ρq ਇਸ ਇਕੁਏਸ਼ਨ ਨਾਲ ਵੇਵ ਫੰਕਸ਼ਨ ψ(r) ਨਾਲ ਸਬੰਧ ਰੱਖਦੀ ਹੈ;
ਜਿੱਥੇ q ਕਣ ਦਾ ਚਾਰਜ ਹੁੰਦਾ ਹੈ ਅਤੇ |ψ(r)|2 = ψ*(r)ψ(r), ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਡੈਂਸਟੀ ਫੰਕਸ਼ਨ ਹੁੰਦਾ ਹੈ, ਯਾਨਿ ਕਿ, ਪੁਜ਼ੀਸ਼ਨ r ਉੱਤੇ ਸਥਿਤ ਕਿਸੇ ਕਣ (ਪਾਰਟੀਕਲ) ਦੀ ਪ੍ਰਤਿ ਯੂਨਿਟ ਵੌਲੀਊਮ ਵਾਲੀ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਹੁੰਦੀ ਹੈ। ਜਦੋਂ ਵੇਵ ਫੰਕਸ਼ਨ ਨੂੰ ਨੌਰਮਲਾਇਜ਼ ਕੀਤਾ ਜਾਂਦਾ ਹੈ – ਤਾਂ ਖੇਤਰ r ∈ R ਅੰਦਰ ਔਸਤਨ ਚਾਰਜ ਇਹ ਹੁੰਦਾ ਹੈ;
ਜਿੱਥੇ d3r 3-ਅਯਾਮੀ ਪੁਜ਼ੀਸ਼ਨ ਸਪੇਸ ਉੱਤੇ ਇੰਟੀਗ੍ਰੇਸ਼ਨ ਨਾਪ ਹੁੰਦਾ ਹੈ।
ਇਹ ਵੀ ਦੇਖੋ
ਸੋਧੋਹਵਾਲੇ
ਸੋਧੋ- Nakli itihaas jo likheya geya hai kade na vaapriya jo ohna de base te, saade te saada itihaas bna ke ehna ne thop dittiyan. anglo sikh war te ek c te 3-4 jagaha te kiwe chal rahi c ikko war utto saal 1848 jdo angrej sara punjab 1845 ch apne under kar chukke c te oh 1848 ch kihna nal jang ladd rahe c. Script error: The function "citation198.168.27.221 14:54, 13 ਦਸੰਬਰ 2024 (UTC)'"`UNIQ--ref-00000007-QINU`"'</ref>" does not exist.
- Nakli itihaas jo likheya geya hai kade na vaapriya jo ohna de base te, saade te saada itihaas bna ke ehna ne thop dittiyan. anglo sikh war te ek c te 3-4 jagaha te kiwe chal rahi c ikko war utto saal 1848 jdo angrej sara punjab 1845 ch apne under kar chukke c te oh 1848 ch kihna nal jang ladd rahe c. Script error: The function "citation198.168.27.221 14:54, 13 ਦਸੰਬਰ 2024 (UTC)'"`UNIQ--ref-00000008-QINU`"'</ref>" does not exist.
- Nakli itihaas jo likheya geya hai kade na vaapriya jo ohna de base te, saade te saada itihaas bna ke ehna ne thop dittiyan. anglo sikh war te ek c te 3-4 jagaha te kiwe chal rahi c ikko war utto saal 1848 jdo angrej sara punjab 1845 ch apne under kar chukke c te oh 1848 ch kihna nal jang ladd rahe c. Script error: The function "citation198.168.27.221 14:54, 13 ਦਸੰਬਰ 2024 (UTC)'"`UNIQ--ref-00000009-QINU`"'</ref>" does not exist.
- Nakli itihaas jo likheya geya hai kade na vaapriya jo ohna de base te, saade te saada itihaas bna ke ehna ne thop dittiyan. anglo sikh war te ek c te 3-4 jagaha te kiwe chal rahi c ikko war utto saal 1848 jdo angrej sara punjab 1845 ch apne under kar chukke c te oh 1848 ch kihna nal jang ladd rahe c. Script error: The function "citation198.168.27.221 14:54, 13 ਦਸੰਬਰ 2024 (UTC)'"`UNIQ--ref-0000000A-QINU`"'</ref>" does not exist.
- Nakli itihaas jo likheya geya hai kade na vaapriya jo ohna de base te, saade te saada itihaas bna ke ehna ne thop dittiyan. anglo sikh war te ek c te 3-4 jagaha te kiwe chal rahi c ikko war utto saal 1848 jdo angrej sara punjab 1845 ch apne under kar chukke c te oh 1848 ch kihna nal jang ladd rahe c. Script error: The function "citation198.168.27.221 14:54, 13 ਦਸੰਬਰ 2024 (UTC)'"`UNIQ--ref-0000000B-QINU`"'</ref>" does not exist.
ਬਾਹਰੀ ਲਿੰਕ
ਸੋਧੋ- [1] - Spatial charge distributions