ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਮੀਟ੍ਰਿਕ
ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਆਈਨਸਟਾਈਨ ਦੀ ਥਿਊਰੀ ਵਿੱਚ, ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਮੀਟ੍ਰਿਕ (ਇਸਨੂੰ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਵੈਕੱਮ ਜਾਂ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਹੱਲ/ਸਲਿਊਸ਼ਨ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ), ਆਈਨਸਟਾਈਨ ਫੀਲਡ ਇਕੁਏਸ਼ਨਾਂ ਲਈ ਇੱਕ ਹੱਲ ਹੁੰਦਾ ਹੈ ਜੋ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਨੂੰ ਕਿਸੇ ਸਫਰੈਰੀਕਲ (ਗੋਲ) ਮਾਸ (ਪੁੰਜ) ਦੇ ਬਾਹਰ ਇਹ ਮੰਨਦੇ ਹੋਏ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ, ਮਾਸ ਦਾ ਇਲੈਕਟ੍ਰਿਕ ਚਾਰਜ, ਮਾਸ ਦਾ ਐਂਗੁਲਰ ਮੋਮੈਂਟਮ, ਅਤੇ ਵਿਸ਼ਵ ਦਾ ਬ੍ਰਹਿਮੰਡੀ ਸਥਿਰਾਂਕ (ਯੂਨੀਵਰਸਲ ਕੌਸਮੌਲੌਜੀਕਲ ਕੌਂਸਟੈਂਟ) ਸਭ ਜ਼ੀਰੋ ਹਨ। ਇਹ ਹੱਲ ਧੀਮੀ ਗਤੀ ਵਾਲੀਆਂ ਘੁੰਮਦੀਆਂ ਅਸਟ੍ਰੋਨੌਮੀਕਲ (ਖਗੋਲਿਕ) ਵਸਤੂਆਂ ਜਿਵੇਂ ਕਈ ਤਾਰੇ ਅਤੇ ਗ੍ਰਹਿ, ਜਿਹਨਾਂ ਵਿੱਚ ਧਰਤੀ ਤੇ ਸੂਰਜ ਸ਼ਾਮਿਲ ਹਨ, ਨੂੰ ਦਰਸਾਉਣ ਲਈ ਲਾਭਕਾਰੀ ਸੰਖੇਪਤਾ (ਅਪ੍ਰੌਕਸੀਮੇਸ਼ਨ) ਹੈ। ਇਹ ਹੱਲ ਕਾਰਲ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਦੇ ਨਾਮ ਤੇ ਰੱਖਿਆ ਗਿਆ, ਜਿਸਨੇ 1916 ਵਿੱਚ ਪਹਿਲੀ ਵਾਰ ਇਹ ਹੱਲ ਛਾਪਿਆ।
ਬਿਰਖੌੱਫ ਦੀ ਥਿਊਰਮ ਮੁਤਾਬਿਕ, ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਮੀਟ੍ਰਿਕ ਆਈਨਸਟਾਈਨ ਫੀਲਡ ਇਕੁਏਸ਼ਨਾਂ ਦਾ ਸਭ ਤੋਂ ਜਿਆਦਾ ਸਫੈਰੀਕਲ ਸਮਿੱਟਰਿਕ, ਵੈਕੱਮ ਹੱਲ ਹੈ। ਇੱਕ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਬਲੈਕ ਹੋਲ ਜਾਂ ਸਥਿਰ ਬਲੈਕ ਹੋਲ ਓਹ ਬਲੈਕ ਹੋਲ ਹੁੰਦੀ ਹੈ ਜਿਸ ਦਾ ਕੋਈ ਚਾਰਜ ਜਾਂ ਐਂਗੁਲਰ ਮੋਮੈਂਟਮ ਨਹੀਂ ਹੁੰਦਾ। ਇੱਕ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਬਲੈਕ ਹੋਲ ਨੂੰ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਮੀਟ੍ਰੀਕ ਰਾਹੀਂ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ, ਅਤੇ ਇਸਦੇ ਮਾਸ (ਪੁੰਜ) ਤੋਂ ਇਲਾਵਾ ਕਿਸੇ ਹੋਰ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਬਲੈਕ ਹੋਲ ਨਾਲੋਂ ਇਸਨੂੰ ਅਲੱਗ ਰੂਪ ਵਿੱਚ ਪਛਾਣਿਆ ਨਹੀਂ ਜਾ ਸਕਦਾ।
ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਬਲੈਕ ਹੋਲ ਨੂੰ ਈਵੈਂਟ ਹੌਰਿਜ਼ਨ ਨਾਮਕ ਇੱਕ ਆਲੇ ਦੁਆਲੇ ਵਾਲੀ ਸਫੈਰੀਕਲ ਸਰਫੇਸ (ਗੋਲ ਸਤਹਿ) ਰਾਹੀਂ ਵਿਸ਼ੇਸ਼ ਤੌਰ ਤੇ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ, ਜੋ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਰੇਡੀਅਸ (ਅਰਧ ਵਿਆਸ) ਉੱਤੇ ਸਥਿਤ ਹੁੰਦੀ ਹੈ, ਜਿਸਨੂੰ ਅਕਸਰ ਬਲੈਕ ਹੋਲ ਦਾ ਅਰਧ ਵਿਆਸ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਕੋਈ ਵੀ ਨਾ-ਘੁੰਮ ਰਿਹਾ ਗੈਰ-ਚਾਰਜ ਵਾਲਾ ਮਾਸ ਜੋ ਆਪਣੇ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਰੇਡੀਅਸ ਤੋਂ ਛੋਟਾ ਹੁੰਦਾ ਹੈ ਇੱਕ ਬਲੈਕ ਹੋਲ ਰਚਦਾ ਹੈ। ਆਈਨਸਟਾਈਨ ਫੀਲਡ ਇਕੁਏਸ਼ਨਾਂ ਦਾ ਹੱਲ ਕਿਸੇ ਮਾਸ M ਲਈ ਪ੍ਰਮਾਣਿਤ ਹੁੰਦਾ ਹੈ, ਇਸਲਈ ਸਿਧਾਂਤ ਮੁਤਾਬਿਕ (ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਥਿਊਰੀ ਮੁਤਾਬਿਕ) ਕਿਸੇ ਵੀ ਮਾਸ ਦੀ ਇੱਕ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਬਲੈਕ ਹੋਲ ਮੌਜੂਦਗੀ ਰੱਖਦੀ ਹੋ ਸਕਦੀ ਹੈ ਜੇਕਰ ਇਸਦੀ ਰਚਨਾ ਲਈ ਅਗਿਆ ਦੇ ਲਈ ਸ਼ਰਤਾਂ ਜਰੂਰਤ ਜਿੰਨੀ ਮਾਤਰਾ ਦੇ ਵਿੱਚ ਪੱਖਪਾਤ ਵਿੱਚ ਹੋਣ।