ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ
ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ (ਅੰਗਰੇਜ਼ੀ: General relativity), ਜਿਸਨੂੰ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਜਨਰਲ ਥਿਊਰੀ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, 1915 ਵਿੱਚ ਅਲਬਰਟ ਆਈਨਸਟਾਈਨ ਦੁਆਰਾ ਛਾਪੀ ਗਈ ਗਰੈਵੀਟੇਸ਼ਨ ਦੀ ਜੀਓਮੈਟ੍ਰਿਕ ਥਿਊਰੀ ਹੈ ਅਤੇ ਅਜੋਕੀ ਭੌਤਿਕ ਵਿਗਿਆਨ ਵਿੱਚ ਗਰੈਵੀਟੇਸ਼ਨ ਦਾ ਚਲੰਤ ਵਿਵਰਣ ਹੈ। ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਅਤੇ ਬ੍ਰਹਿਮੰਡੀ ਗਰੈਵੀਟੇਸ਼ਨ ਦੇ ਨਿਊਟਨ ਦੇ ਨਿਯਮਾਂ ਦਾ ਸਰਵਸਧਾਰਨ ਰੂਪ ਬਣਾਉਂਦੀ ਹੈ, ਸਪੇਸ ਅਤੇ ਟਾਈਮ ਦੇ ਇੱਕ ਰੇਖਾਗਣਿਤਿਕ ਗੁਣ ਦੇ ਰੂਪ ਵਿੱਚ ਗਰੈਵਿਟੀ ਦਾ ਇੱਕ ਯੂਨੀਫਾਈਡ (ਇਕੱਠਾ ਮਿਲਾਇਆ ਹੋਇਆ) ਵਿਵਰਣ ਮੁੱਹਈਆ ਕਰਵਾਉਂਦੀ ਹੈ। ਖਾਸਕਰਕੇ, ਸਪੇਸ ਦਾ ਕਰਵੇਚਰ ਐਨਰਜੀ ਅਤੇ ਮੋਮੈਂਟਮ ਨਾਲ ਸਿੱਧਾ ਸਬੰਧਿਤ ਹੁੰਦਾ ਹੈ ਚਾਹੇ ਜਿਹੋ ਜਿਹਾ ਮਰਜੀ ਪਦਾਰਥ ਅਤੇ ਰੇਡੀਏਸ਼ਨ ਮੌਜੂਦ ਹੋਵੇ। ਇਸ ਸਬੰਧ ਨੂੰ ਆਈਨਸਟਾਈਨ ਦੀਆਂ ਫੀਲਡ ਇਕੁਏਸ਼ਨਾਂ ਰਾਹੀਂ ਦਰਸਾਇਆ ਗਿਆ ਹੈ, ਜੋ ਅੰਸ਼ਿਕ ਡਿਫਰੈਂਸ਼ੀਅਲ ਸਮੀਕਰਨਾਂ ਦਾ ਇੱਕ ਸਿਸਟਮ ਹੈ।
ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਕੁੱਝ ਅਨੁਮਾਨ ਕਲਾਸੀਕਲ ਫਿਜਿਕਸ ਨਾਲੋਂ ਮਹੱਤਵਪੂਰਨ ਤਰੀਕੇ ਨਾਲ ਵੱਖਰੇ ਹਨ, ਖਾਸ ਕਰਕੇ ਵਕਤ ਦੇ ਲਾਂਘੇ ਬਾਰੇ, ਸਪੇਸ ਦੀ ਜੀਓਮੈਟਰੀ ਬਾਰੇ, ਸੁਤੰਰਤ ਗਿਰਾਵਟ (ਫਰੀ ਫਾਲ) ਵਿੱਚ ਚੀਜ਼ਾਂ ਦੀ ਗਤੀ, ਅਤੇ ਪ੍ਰਕਾਸ਼ ਦਾ ਸੰਚਾਰ। ਅਜਿਹੇ ਫਰਕਾਂ ਵਿੱਚ ਗਰੈਵੀਟੇਸ਼ਨਲ ਟਾਈਮ ਡਿੱਲੇਸ਼ਨ (ਫੈਲਾਓ), ਗਰੈਵੀਟੇਸ਼ਨਲ ਲੈਂਜ਼ਿੰਗ, ਪ੍ਰਕਾਸ਼ ਦੀ ਗਰੈਵਿਟੇਸ਼ਨਲ ਰੈੱਡ-ਸ਼ਿਫਟ, ਅਤੇ ਗਰੈਵਿਟੇਸ਼ਨਲ ਟਾਈਮ ਡਿਲੇ (ਦੇਰੀ) ਸ਼ਾਮਿਲ ਹਨ। ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਅਨੁਮਾਨ ਸਾਰੇ ਹੁਣ ਤੱਕ ਦੇ ਨਿਰੀਖਣਾਂ ਅਤੇ ਪ੍ਰਯੋਗਾਂ ਵਿੱਚ ਸਾਬਤ ਕੀਤੇ ਜਾ ਚੁੱਕੇ ਹਨ। ਭਾਵੇਂ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਗ੍ਰੈਵਿਟੀ ਦੀ ਇਕਲੌਤੀ ਰਿਲੇਟੀਵਿਟੀ ਥਿਊਰੀ ਨਹੀਂ ਹੈ, ਇਹ ਸਰਲਤਮ ਥਿਊਰੀ ਹੈ ਜੋ ਪ੍ਰਯੋਗਿਕ ਆਂਕੜਿਆਂ ਨਾਲ ਸਥਿਰਤਾ ਵਾਲੀ ਹੈ। ਫੇਰ ਵੀ, ਅਣਸੁਣਝੇ ਸਵਾਲ ਰਹਿ ਜਾਂਦੇ ਹਨ, ਜਿਹਨਾਂ ਵਿੱਚੋਂ ਮੁੱਖ ਤੌਰ ਤੇ ਮੁਢਲਾ ਸਵਾਲ ਇਹ ਰਿਹਾ ਹੈ ਕਿ ਕਿਵੇਂ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਕੁਆਂਟਮ ਫਿਜਿਕਸ ਦੇ ਸਿਧਾਂਤਾਂ ਨਾਲ ਪੁਨਰਮਿਲਾਪ ਕੀਤਾ ਜਾ ਸਕੇ ਕਿ ਇੱਕ ਸੰਪੂਰਣ ਅਤੇ ਸਵੈ-ਸਿੱਧ ਥਿਊਰੀ ਔਫ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਰਚੀ ਜਾ ਸਕੇ।
ਆਈਨਸਟਾਈਨ ਦੀ ਥਿਊਰੀ ਦੇ ਮਹੱਤਵਪੂਰਨ ਅਸਟ੍ਰੋਫਿਜ਼ੀਕਲ (ਖਗੋਲ ਭੌਤਿਕੀ) ਪ੍ਰਭਾਵ ਹਨ। ਉਦਾਹਰਨ ਲਈ, ਇਹ ਬਲੈਕ ਹੋਲਾਂ ਦੀ ਹੋਂਦ ਦੱਸਦੀ ਹੈ।– ਜੋ ਸਪੇਸ ਦਾ ਅਜਿਹਾ ਖੇਤਰ ਹੁੰਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਸਪੇਸ ਅਤੇ ਟਾਈਮ ਇਸ ਤਰੀਕੇ ਨਾਲ ਤੋੜੇ ਮਰੋੜੇ ਜਾਂਦੇ ਹਨ ਕਿ ਕੁੱਝ ਵੀ, ਇੱਥੋਂ ਤੱਕ ਕਿ ਪ੍ਰਕਾਸ਼ ਵੀ, ਬਚ ਨਹੀਂ ਸਕਦਾ- ਜਿਵੇਂ ਕਿਸੇ ਭਾਰੀ ਤਾਰੇ ਲਈ ਅੰਤਿਮ ਅਵਸਥਾ ਹੋਵੇ। ਜਰੂਰਤ ਮੁਤਾਬਿਕ ਸਬੂਤ ਹਨ ਕਿ ਅਸਟ੍ਰੋਨੋਮੀਕਲ ਚੀਜ਼ਾਂ ਦੀਆਂ ਕੁੱਝ ਕਿਸਮਾਂ ਰਾਹੀਂ ਪ੍ਰਚੰਡ ਰੇਡੀਏਸ਼ਨ ਬਾਹਰ ਕੱਢਣ ਦਾ ਕਾਰਨ ਬਲੈਕ ਹੋਲਾਂ ਹਨ; ਉਦਾਹਰਨ ਲਈ, ਮਾਈਕ੍ਰੋਕੁਆਸਰ ਅਤੇ ਕ੍ਰਿਆਸ਼ੀਲ ਗਾਲਾਕਟਿਕ ਨਿਊਕਲੀਆਈ, ਕ੍ਰਮਵਾਰ, ਸਟੈੱਲਰ ਬਲੈਕ ਹੋਲਾਂ ਅਤੇ ਹੋਰ ਜਿਆਦਾ ਭਾਰੀ ਕਿਸਮ ਦੀਆਂ ਬਲੈਕ ਹੋਲਾਂ ਦੀ ਹੋਂਦ ਤੋਂ ਨਿਕਲਦੇ ਹਨ। ਗਰੈਵਟੀ ਕਾਰਨ ਪ੍ਰਕਾਸ਼ ਦਾ ਝੁਕਣਾ ਗਰੈਵਿਟੇਸ਼ਨਲ ਲੈਂਜ਼ਿੰਗ ਦੇ ਘਟਨਾਕ੍ਰਮ ਨੂੰ ਪੈਦਾ ਕਰਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਇੱਕੋ ਦੂਰੀ ਤੇ ਪਈਆਂ ਅਸਟ੍ਰੋਨੋਮੀਕਲ ਵਸਤੂਆਂ ਦੀਆਂ ਮਲਟੀਪਲ ਤਸਵੀਰਾਂ ਅਕਾਸ਼ ਵਿੱਚ ਦ੍ਰਿਸ਼ਟੀ ਅਧੀਨ ਆ ਜਾਂਦੀਆਂ ਹਨ। ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਗਰੈਵੀਟੇਸ਼ਨਲ ਵੇਵਜ਼ ਦੀ ਹੋਂਦ ਦਾ ਵੀ ਅਨੁਮਸਾਨ ਲਗਾਉਂਦੀ ਹੈ, ਜੋ ਉਦੋਂ ਤੋਂ ਅਸਿੱਧੇ ਰੂਪ ਵਿੱਚ ਦੇਖੀਆਂ ਗਈਆਂ ਹਨ; ਇੱਕ ਸਿੱਧਾ ਨਾਪ “LIGO” ਅਤੇ “NASA/ESA ਲੇਜ਼ਰ ਇੰਟਰਫੈਰੋਮੀਟਰ ਸਪੇਸ ਅੰਟੀਨਾ” ਅਤੇ ਬਹੁਤ ਸਾਰੇ “ਤਾਰਿਆਂ ਦੀ ਸਮਾਂ ਸਾਰਣੀ” ਵਰਗੇ ਪ੍ਰੋਜੈਕਟਾਂ ਦਾ ਉਦੇਸ਼ ਹੈ।
ਇਤਿਹਾਸ
ਸੋਧੋ1905 ਵਿੱਚ ਸਪੈਸ਼ਲ ਥਿਊਰੀ ਔਫ ਰਿਲੇਟੀਵਿਟੀ ਛਪਣ ਤੋਂ ਤੁਰੰਤ ਬਾਦ, ਆਈਨਸਟਾਈਨ ਨੇ ਸੋਚਣਾ ਸ਼ੁਰੂ ਕੀਤਾ ਕਿ ਗਰੈਵਿਟੀ ਨੂੰ ਕਿਸ ਤਰਾਂ ਅਪਣੇ ਨਵੇਂ ਰਿਲੇਟੀਵਿਸਟਿਕ ਢਾਂਚੇ ਵਿੱਚ ਉਤਾਰੇ। 1907 ਵਿੱਚ, ਇੱਕ ਦਰਸ਼ਕ ਦੇ ਫਰੀ ਫਾਲ ਵਾਲੇ ਸਰਲ ਸੋਚ-ਪ੍ਰਯੋਗ ਨਾਲ ਸ਼ੁਰੂ ਕਰਦੇ ਹੋਏ, ਉਸਨੇ ਓਸ ਚੀਜ਼ ਤੇ ਕੰਮ ਕਰਨਾ ਸ਼ੁਰੂ ਕਰ ਦਿੱਤਾ ਜੋ ਗਰੈਵਿਟੀ ਦੀ ਰਿਲੇਟਵਿਸਟਿਕ ਥਿਊਰੀ ਦੇ ਲਈ ਇੱਕ ਅੱਠ-ਸਾਲ ਦੀ ਖੋਜ ਹੋਣ ਵਾਲੀ ਸੀ। ਬਹੁਤ ਸਾਰੀਆਂ ਘੁੰਮਣਘੇਰੀਆਂ ਅਤੇ ਝੂਠੀਆਂ ਸ਼ੁਰੂਆਤਾਂ ਤੋਂ ਬਾਦ, ਉਸਦਾ ਕੰਮ 1915 ਨਵੰਬਰ ਮਹੀਨੇ ਵਿੱਚ ਪਰਸ਼ੀਅਨ ਅਕੈਡਮੀ ਔਫ ਸਾਇਂਸ ਨੂੰਅਪਣੀ ਖੋਜ ਪ੍ਰਸਤੁਤ ਕਰਨ ਤੇ ਸਮਾਪਤ ਹੋਇਆ ਜਿਸਨੂੰ ਅਸੀਂ ਹੁਣ ਆਈਨਸਟਾਈਨ ਫੀਲਡ ਇਕੁਏਸ਼ਨਾਂ ਦੇ ਨਾਮ ਨਾਲ ਜਾਣਦੇ ਹਾਂ। ਇਹ ਸਮੀਕਰਨਾਂ ਦਰਸਾਉਂਦੀਆਂ ਹਨ ਕਿ ਕਿਵੇਂ ਸਪੇਸ ਅਤੇ ਟਾਈਮ ਦੀ ਜਿਓਮੈਟਰੀ ਪ੍ਰਭਾਵਿਤ ਹੁੰਦੀ ਹੈ ਭਾਵੇਂ ਜੋ ਮਰਜੀ ਪਦਾਰਥ ਅਤੇ ਰੇਡੀਏਸ਼ਨ ਮੌਜੂਦ ਹੋਣ, ਅਤੇ ਆਈਨਸਟਾਈਨ ਦੀ ਜਨਰਲ ਥਿਊਰੀ ਔਫ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਕੋਰ (ਮੁੱਢ) ਰਚਦੀਆਂ ਹਨ।
ਆਈਨਸਟਾਈਨ ਫੀਲਡ ਇਕੁਏਸ਼ਨਾਂ ਗੈਰ-ਲੀਨੀਅਰ ਹਨ ਅਤੇ ਹੱਲ ਕਰਨ ਲਈ ਬਹੁਤ ਕਠਿਨ ਹਨ। ਥਿਊਰੀ ਦੇ ਸ਼ੁਰੂਆਤੀ ਅਨੁਮਾਨਾਂ ਤੇ ਕੰਮ ਕਰਦੇ ਹੋਏ ਆਈਨਸਟਾਈਨ ਨੇ ਸੰਖੇਪ ਕਰਨ ਵਾਲੇ ਤਰੀਕੇ (ਅਪਰੌਕਸੀਮੇਸ਼ਨ ਮੈਥਡ) ਵਰਤੇ। ਪਰ 1916 ਦੇ ਸ਼ੁਰੂ ਵਿੱਚ, ਅਸਟ੍ਰੋਭੌਤਿਕ ਵਿਗਿਆਨੀ ਕਾਰਲ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਨੇ ਆਈਨਸਟਾਈਨ ਫੀਲਡ ਇਕੁਏਸ਼ਨਾਂ ਲਈ ਪਹਿਲਾ ਗੈਰ-ਮਮੂਲੀ ਇੰਨਬਿੰਨ ਹੱਲ ਖੋਜਿਆ, ਜਿਸ ਨੂੰ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਮੀਟ੍ਰਿਕ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਹੱਲ ਗਰੈਵੀਟੇਸ਼ਨਲ ਤੋੜ, ਅਤੇ ਬਲੈਕ ਹੋਲਾਂ ਕਹੀਆਂ ਜਾਣ ਵਾਲੀਆਂ ਚੀਜ਼ਾਂ ਦੇ ਅੰਤਿਮ ਸਟੇਜ ਦੇ ਵਿਵਰਣ ਲਈ ਨੀਂਹ ਵੱਲ ਲੈ ਗਿਆ। ਇਸੇ ਸਾਲ ਵਿੱਚ, ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਦੇ ਹੱਲ ਦਾ ਇਲੈਕਟ੍ਰੀਕਲ ਚਾਰਜ ਵਾਲੀਆਂ ਚੀਜ਼ਾਂ ਉੱਤੇ “ਸਰਵ ਸਧਾਰਨਕਰਨ” ਕਰਨ ਵੱਲ ਪਹਿਲੇ ਕਦਮ ਚੁੱਕੇ ਗਏ, ਜਿਸਦੇ ਅੰਤਿਮ ਨਤੀਜੇ ਵਜੋਂ ਰੀਸਨਰ-ਨੌਰਡਸਟਰੌਮ ਹੱਲ ਮਿਲਿਆ, ਜਿਸਨੂੰ ਹੁਣ ਇਲੈਕਟ੍ਰੀਕਲ ਤੌਰ ਤੇ ਚਾਰਜ ਹੋਈਆਂ ਬਲੈਕ ਹੋਲਾਂ ਨਾਲ ਜੋੜਿਆ ਗਿਆ ਹੈ। 1917 ਵਿੱਚ, ਆਈਨਸਟਾਈਨ ਨੇ ਅਪਣੀ ਥਿਊਰੀ ਨੂੰ ਬ੍ਰਹਿਮੰਡ ਨੂੰ ਸੰਪੂਰਣ ਤੌਰ ਤੇ ਲੈ ਕੇ ਲਾਗੂ ਕੀਤਾ, ਅਤੇ ਸਾਪੇਖਿਕ ਬ੍ਰਹਿਮੰਡ ਵਿਗਿਆਨ (ਰਿਲੇਟੀਵਿਸਟਿਕ ਕੌਸਮੌਲੌਜੀ) ਦੀ ਸ਼ੁਰੂਆਤ ਕੀਤੀ। ਸਮਕਾਲੀਨ ਵਿਚਾਰਾਂ ਨਾਲ ਮੇਲ ਕਰਕੇ, ਉਸਨੇ ਅਪਣੀਆਂ ਅਸਲੀ ਫੀਲਡ ਇਕੁਏਸ਼ਨਾਂ ਵਿੱਚ –ਕੌਸਮੌਲੌਜੀਕਲ ਕੌਂਸਟੈਂਟ- ਨਾਮ ਦਾ ਇੱਕ ਨਵਾਂ ਪੈਰਾਮੀਟਰ ਸ਼ਾਮਿਲ ਕਰਕੇ - ਇੱਕ ਗਤੀਹੀਣ ਬ੍ਰਹਿਮੰਡ ਦੀ ਕਲਪਨਾ ਕੀਤੀ – ਤਾਂ ਜੋ ਨਿਰੀਖਣ ਕੀਤੀ ਗਈ ਪਰਿਕਲਪਨਾ ਨਾਲ ਮਿਲਾਪ ਰੱਖਿਆ ਜਾ ਸਕੇ। 1929 ਤੱਕ, ਫੇਰ ਵੀ, ਹੱਬਲ ਅਤੇ ਹੋਰਾਂ ਦੇ ਕੰਮ ਨੇ ਸਾਬਤ ਕੀਤਾ ਕਿ ਸਾਡਾ ਬ੍ਰਹਿਮੰਡ ਫੈਲ ਰਿਹਾ ਹੈ। ਇਸ ਨੂੰ 1922 ਵਿੱਚ ਫਰੇਡਮੈਨ ਰਾਹੀਂ ਖੋਜੇ ਫੈਲਾਉਣ ਵਾਲੇ ਬ੍ਰਹਿਮੰਡੀ ਹੱਲਾਂ ਰਾਹੀਂ ਜਲਦੀ ਹੀ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ, ਜਿਹਨਾਂ ਵਿੱਚ ਕੌਸਮੌਲੌਜੀਕਲ ਕੌਂਸਟੈਂਟ (ਬ੍ਰਹਿਮੰਡੀ ਸਥਿਰਾਂਕ) ਦੀ ਜਰੂਰਤ ਨਹੀਂ ਪੈਂਦੀ। ਲੀਮੇਟਰ ਨੇ ਇਹਨਾਂ ਹੱਲਾਂ ਨੂੰ ਸ਼ੁਰੂਆਤੀ ਬਿੱਗ-ਬੈਂਗ ਮਾਡਲਾਂ ਦੇ ਫਾਰਮੂਲੇ ਬਣਾਉਣ ਲਈ ਵਰਤਿਆ ਸੀ।, ਜਿਸ ਵਿੱਚ ਸਾਡਾ ਬ੍ਰਹਿਮੰਡ (ਯੂਨੀਵਰਸ) ਇੱਕ ਅੱਤ ਗਰਮ ਅਤੇ ਸੰਘਣੀ ਸ਼ੁਰੂਆਤੀ ਅਵਸਥਾ ਤੋਂ ਪੈਦਾ ਹੋਇਆ ਦਿਖਾਇਆ ਹੁੰਦਾ ਹੈ। ਆਈਨਸਟਾਈਨ ਨੇ ਬਾਦ ਵਿੱਚ ਐਲਾਨ ਕੀਤਾ ਕਿ ਬ੍ਰਹਿਮੰਡੀ ਸਥਿਰਾਂਕ ਉਸਦੇ ਜੀਵਨ ਦੀ ਸਭ ਤੋਂ ਵੱਡੀ ਗਲਤੀ ਸੀ।।
ਓਸ ਅਰਸੇ ਦੌਰਾਨ, ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਭੌਤਿਕੀ ਥਿਊਰੀਆਂ ਦਰਮਿਆਨ ਇੱਕ ਉਤਸੁਕਤਾ ਵਾਲੀ ਚੀਜ਼ ਬਣੀ ਰਹੀ। ਇਹ ਸਪਸ਼ਟ ਤੌਰ ਤੇ ਨਿਊਟੋਨੀਅਨ ਗਰੈਵਿਟੀ ਤੋਂ ਵਧੀਆ ਸੀ।, ਜੋ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਨਾਲ ਅਨੁਕੂਲ ਸੀ ਅਤੇ ਨਿਊਟੋਨੀਅਨ ਥਿਊਰੀ ਰਾਹੀਂ ਵਿਵਰਣ ਨਾ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਕਈ ਪ੍ਰਭਾਵਾਂ ਲਈ ਅਨੁਕੂਲ ਸੀ। ਆਈਨਸਟਾਈਨ ਨੇ ਖੁਦ 1915 ਵਿੱਚ ਸਾਬਤ ਕੀਤਾ ਕਿ ਕਿਵੇਂ ਉਸਦੀ ਇਹ ਥਿਊਰੀ ਬਗੈਰ ਕਿਸੇ ਮਨਮਰਜੀ ਦੇ ਪੈਰਾਮੀਟਰਾਂ (ਫੱਜ ਫੈਕਟਰਾਂ) ਤੋਂ ਮਰਕਰੀ ਪਲੈਨੈੱਟ ਨਿਯਮ ਵਿਰੁੱਧ ਸੂਰਜ ਦੇ ਨੇੜੇ ਸਮਝਾਉਂਦੀ ਹੈ। ਇਸੇਤਰਾਂ, 1919 ਵਿੱਚ ਐਡਿੰਗਟਨ ਦੀ ਅਗਵਾਈ ਵਾਲੇ ਇੱਕ ਖੋਜ ਦਲ ਨੇ ਆਈਨਸਟਾਈਨ ਨੂੰ ਇੱਕਦਮ ਪ੍ਰਸਿੱਧ ਕਰਦੇ ਹੋਏ, ਮਈ 29 ਨੂੰ ਪੂਰੇ ਸੂਰਜ ਗ੍ਰਹਿਣ ਦੌਰਾਨ ਸੂਰਜ ਰਾਹੀਂ ਤਾਰੇ ਦੀ ਰੋਸ਼ਨੀ ਨੂੰ ਝੁਕਾ ਦੇਣ ਲਈ ਅਨੁਮਾਨ ਸਾਬਤ ਕੀਤੇ। ਅਜੇ ਵੀ ਇਹ ਥਿਊਰੀ ਸਿਧਾਂਤਕ ਭੌਤਿਕ ਵਿਗਿਆਨ ਅਤੇ ਖਗੋਲ ਵਿਗਿਆਨ ਵਿੱਚ ਸਿਰਫ 1960 ਅਤੇ 1975 ਦਰਮਿਆਨ ਵਿਕਾਸਾਂ ਨਾਲ ਦਾਖਲ ਹੋਈ, ਜਿਸਨੂੰ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਗੋਲਡਨ ਏਜ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਭੌਤਿਕ ਵਿਗਿਆਨੀਆਂ ਨੇ ਬਲੈਕ ਹੋਲਾਂ ਦੀ ਧਾਰਨਾ ਨੂੰ ਸਮਝਣਾ ਅਤੇ ਕੁਆਸਰਾਂ ਨੂੰ ਇਹਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਅਜਿਹੀ ਖਗੋਲ-ਭੌਤਿਕੀ ਪ੍ਰਗਟਾਓ ਵਾਲੀ ਚੀਜ਼ ਪਛਾਣਨਾ ਸ਼ੁਰੂ ਕੀਤਾ। ਪਹਿਲਾਂ ਨਾਲੋਂ ਹੋਰ ਸ਼ੁੱਧ ਸੂਰਜੀ ਸਿਸਟਮ ਪਰਖਾਂ ਨੇ ਇਸ ਥਿਊਰੀ ਦੀ ਅਨੁਮਾਨ ਲਗਾਉਣ ਦੀ ਸ਼ਕਤੀ, ਅਤੇ ਸਾਪੇਖਿਕ ਕੌਸਮੌਲੌਜੀ ਨੂੰ ਵੀ ਸਾਬਤ ਕੀਤਾ ਜੋ ਸਿੱਧੀਆਂ ਨਿਰੀਖਣ ਪਰਖਾਂ ਲਈ ਜਿਮੇਵਾਰ ਬਣ ਗਈ।
ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਤੋਂ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਤੱਕ
ਸੋਧੋਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਨੂੰ ਕਲਾਸੀਕਲ ਫਿਜ਼ਿਕਸ ਤੋਂ ਇਸਦੀਆਂ ਸਮਾਨਤਾਵਾਂ ਅਤੇ ਪ੍ਰਸਥਾਨਾਂ ਨੂੰ ਜਾਂਚ ਕੇ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਪਹਿਲਾ ਕਦਮ ਇਹ ਅਨੁਭਵ ਹੈ ਕਿ ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਅਤੇ ਗਰੈਵਟੀ ਦੇ ਨਿਊਟਨ ਦੇ ਨਿਯਮ ਇੱਕ ਜੀਓਮੈਟ੍ਰਿਕ ਵਿਵਰਣ ਨੂੰ ਸਵੀਕਾਰ ਕਰਦੇ ਹਨ। ਇਸ ਵਿਵਰਣ ਦਾ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਸਿਧਾਂਤਾਂ ਨਾਲ ਮੇਲ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਰਚਨਾਤਮਿਕ ਵਿਊਂਤਪੱਤੀ ਕਰਨ ਲਈ ਸਹਾਇਕ ਸਿੱਧ ਹੁੰਦਾ ਹੈ।
ਨਿਊਟੋਨੀਅਨ ਗਰੈਵਿਟੀ ਦੀ ਜੀਓਮੈਟਰੀ
ਸੋਧੋਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਮੁਤਾਬਿਕ, ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਵਿੱਚ ਚੀਜ਼ਾਂ ਉਹਨਾਂ ਚੀਜ਼ਾਂ ਵਾਂਗ ਹੀ ਵਰਤਾਓ ਕਰਦੀਆਂ ਹਨ ਜੋ ਕਿਸੇ ਐਕਸਲਰੇਟ ਹੋ ਰਹੇ ਡੱਬੇ ਵਿੱਚ ਹੁੰਦੀਆਂ ਹਨ। ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਕਿਸੇ ਰੌਕਿਟ ਵਿੱਚ (ਖੱਬੇ ਪਾਸੇ) ਕਿਸੇ ਗੇਂਦ ਨੂੰ ਓਸੇ ਤਰਾਂ ਦੇਖੇਗਾ ਜਿਵੇਂ ਇਹ ਧਰਤੀ ਉੱਤੇ (ਸੱਜੇ ਪਾਸੇ) ਦੇਖਦਾ ਹੈ, ਸ਼ਰਤ ਇਹ ਹੈ ਕਿ ਰੌਕਿਟ ਦਾ ਐਕਸਲਰੇਸ਼ਨ 9.8 m/s2 ਦੇ ਬਰਾਬਰ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ (ਗਰੈਵਿਟੀ ਕਾਰਣ ਧਰਤੀ ਦੀ ਸਤਹਿ ਉੱਤੇ ਐਕਸਲਰੇਸ਼ਨ ਬਰਾਬਰ)।
ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਦੇ ਅਧਾਰ ਉੱਤੇ ਇਹ ਧਾਰਨਾ ਹੈ ਕਿ ਕਿਸੇ ਚੀਜ਼ ਦੀ ਗਤੀ ਨੂੰ ਸੁਤੰਤਰ (ਜਾਂ ਇਨਰਸ਼ੀਅਲ) ਗਤੀ, ਅਤੇ ਇਸ ਸੁਤੰਤਰ ਗਤੀ ਤੋਂ ਝੁਕਾਵਾਂ (ਡੈਵੀਏਸ਼ਨਾਂ) ਦੇ ਇੱਕ ਮੇਲ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਅਜਿਹੀਆਂ ਡੈਵੀਏਸ਼ਨਾਂ ਨਿਊਟਨ ਦੇ ਗਤੀ ਦੇ ਦੂਜੇ ਸਿਧਾਂਤ ਦੇ ਅਨੁਸਾਰ ਕਿਸੇ ਚੀਜ਼ ਉੱਤੇ ਕ੍ਰਿਆ ਕਰ ਰਹੇ ਬਾਹਰੀ ਬਲਾਂ (ਫੋਰਸਾਂ) ਕਾਰਣ ਹੁੰਦੀਆਂ ਹਨ, ਜੋ ਇਹ ਬਿਆਨ ਕਰਦਾ ਹੈ ਕਿ ਕਿਸੇ ਚੀਜ਼ ਉੱਤੇ ਕ੍ਰਿਆ ਕਰ ਰਿਹਾ ਸ਼ੁੱਧ ਫੋਰਸ ਉਸ ਬੌਡੀ ਦੇ (ਇਨਰਸ਼ੀਅਲ) ਮਾਸ (ਪੁੰਜ/ਮਾਦੇ) ਦੇ ਉਸਦੇ ਐਕਸਲਰੇਸ਼ਨ ਦੇ ਗੁਣਨਫਲ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ। ਤਰਜੀਹੀ ਇਨਰਸ਼ੀਅਲ ਗਤੀਆਂ ਸਪੇਸ ਅਤੇ ਟਾਈਮ ਦੀ ਜੀਓਮੈਟਰੀ ਨਾਲ ਸਬੰਧਿਤ ਹੁੰਦੀਆਂ ਹਨ: ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਦੀ ਸਟੈਂਡਰਡ ਫਰੇਮ ਔਫ ਰੈਫਰੈਂਸ ਵਿੱਚ, ਸੁਤੰਤਰ ਗਤੀ ਵਿੱਚ ਗਤੀਸ਼ੀਲ ਵਸਤੂਆਂ ਸਥਿਰ ਸਪੀਡ ਉੱਤੇ ਸਿੱਧੀਆਂ ਰੇਖਾਵਾਂ ਵਿੱਚ ਗਤੀ ਕਰਦੀਆਂ ਹਨ। ਅਜੋਕੀ ਭਾਸ਼ਾ ਵਿੱਚ, ਉਹਨਾਂ ਦੇ ਰਸਤੇ ਕਰਵਡ ਸਪੇਸ-ਟਾਈਮ ਵਿੱਚ, ਜੀਓਡੈਸਿਕ, ਸਿੱਧੀਆਂ ਵਰਲਡ ਲਾਈਨਾਂ ਹੁੰਦੇ ਹਨ।
ਇਸਤੋਂ ਉਲਟ, ਕੋਈ ਇਹ ਉਮੀਦ ਵੀ ਰੱਖੇਗਾ ਕਿ ਇਨਰਸ਼ੀਅਲ ਗਤੀਆਂ (ਮੋਸ਼ਨਜ਼) , ਇੱਕ ਵਾਰ ਵਸਤੂਆਂ ਦੀ ਅਸਲ ਗਤੀ ਨੂੰ ਦੇਖਣ ਨਾਲ ਪਛਾਣ ਹੋ ਜਾਂਦੀਆਂ ਹਨ ਅਤੇ ਬਾਹਰੀ ਫੋਰਸਾਂ (ਜਿਵੇਂ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਜ਼ਮ ਜਾਂ ਫਰਿਕਸ਼ਨ/ਰਗੜ) ਲਈ ਆਗਿਆਵਾਂ ਲੈ ਲੈਂਦੀਆਂ ਹਨ, ਸਪੇਸ ਦੀ ਜੀਓਮੈਟ੍ਰੀ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ ਲਈ ਵਰਤੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ, ਅਤੇ ਟਾਈਮ ਕੋ-ਆਰਡੀਨੇਟ ਦੇ ਤੌਰ ਤੇ ਵੀ ਵਰਤੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ। ਫੇਰ ਵੀ, ਇੱਕ ਵਾਰ ਗਰੈਵਟੀ ਮੈਦਾਨ ਵਿੱਚ ਆ ਜਾਂਦੀ ਹੈ ਤਾਂ ਇੱਥੇ ਇੱਕ ਅਸ਼ੁਧੱਤਾ ਰਹਿ ਜਾਂਦੀ ਹੈ। ਨਿਊਟਨ ਨੇ ਗਰੈਵਿਟੀ ਦੇ ਨਿਯਮ ਮੁਤਾਬਿਕ, ਅਤੇ ਪ੍ਰਯੋਗਾਂ ਜਿਵੇਂ ਅਟਵਸ ਅਤੇ ਇਸਦੇ ਚੇਲਿਆਂ ਵਾਲੇ ਪ੍ਰਯੋਗਾਂ ਦੁਆਰਾ ਆਤਮਨਿਰਭਰ ਤਰੀਕਿਆਂ ਨੇ ਸਾਬਤ ਕੀਤਾ ਕਿ ਫਰੀ ਫਾਲ ਦਾ ਇੱਕ ਸੰਸਾਰੀਕਰਨ ਹੈ (ਜਿਸਨੂੰ ਕਮਜੋਰ ਸਮਾਨਤਾ ਸਿਧਾਂਤ ਜਾਂ ਵੀਕ ਇਕੁਈਵੇਲੈਂਸ ਪ੍ਰਿੰਸੀਪਲ ਜਾਂ ਇਨਰਸ਼ੀਅਲ ਅਤੇ ਪੈੱਸਿਵ ਗਰੈਵਿਟੇਸ਼ਨਲ ਮਾਸ ਦੀ ਸੰਸਾਰਿਕ ਬਰਾਬਰਤਾ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ) : ਫਰੀ ਫਾਲ ਵਿੱਚ ਕਿਸੇ ਟੈਸਟ ਬੌਡੀ ਦਾ ਰਸਤਾ (ਟਰਾਜੈਕਟਰੀ) ਸਿਰਫ ਇਸਦੀ ਪੁਜੀਸ਼ਨ ਅਤੇ ਸ਼ੁਰੂਆਤੀ ਸਪੀਡ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ, ਪਰ ਉਸਦੇ ਕਿਸੇ ਵੀ ਪਦਾਰਥਕ ਗੁਣ ਉੱਤੇ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦਾ। ਇਸਦਾ ਇੱਕ ਸਰਲ ਰੂਪ ਆਈਨਸਟਾਈਨ ਦੇ ਐਲੀਵੇਟਰ ਪ੍ਰਯੋਗ ਵਿੱਚ ਹੈ, ਜੋ ਤਸਵੀਰ ਵਿੱਚ ਸਮਝਾਇਅ ਗਿਆ ਹੈ: ਕਿਸੇ ਛੋਟੇ ਬੰਦ ਕਮਰੇ ਵਿੱਚ ਕਿਸੇ ਦਰਸ਼ਕ ਲਈ, ਡੇਗੀ ਗਈ ਗੇਂਦ ਵਰਗੀਆਂ ਚੀਜ਼ਾਂ ਦੇ ਰਸਤੇ ਦਾ ਨਕਸ਼ਾ ਬਣਾਉਣ ਤੇ, ਇਹ ਫੈਸਲਾ ਕਰਨਾ ਅਸੰਭਵ ਹੁੰਦਾ ਹੈ ਕਿ ਕਿਸੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਵਿੱਚ ਕਮਰਾ ਰੈਸਟ ਉੱਤੇ ਹੈ, ਜਾਂ ਕਿਸੇ ਫਰੀ ਸਪੇਸ ਵਿੱਚ ਰੌਕਿਟ ਵਿੱਚ ਹੈ ਜੋ ਕਿਸੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਦੇ ਰੇਟ ਦੇ ਬਰਾਬਰ ਐਕਸਲਰੇਸ਼ਨ ਵਿੱਚ ਹੈ।
ਫਰੀ ਫਾਲ ਦੇ ਸੰਸਾਰੀਕਰਨ ਦੇ ਦਿੱਤੇ ਹੋਣ ਤੇ, ਇਨਰਸ਼ੀਅਲ ਮੋਸ਼ਨ ਅਤੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੋਰਸ ਦੇ ਪ੍ਰਭਾਵ ਅਧੀਨ ਮੋਸ਼ਨ (ਗਤੀ) ਦਰਮਿਆਨ ਕੋਈ ਵੀ ਨਿਰੀਖਣ ਕੀਤੇ ਜਾਣ ਯੋਗ ਕਮੀ ਨਹੀਂ ਹੁੰਦੀ। ਇਹ ਇਨਰਸ਼ੀਅਲ ਮੋਸ਼ਨ ਦੀ ਇੱਕ ਨਵੀਂ ਸ਼੍ਰੇਣੀ ਦੀ ਪਰਿਭਾਸ਼ਾ ਦਾ ਸੁਝਾਓ ਦਿੰਦਾ ਹੈ, ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੋਰਸ ਦੇ ਪ੍ਰਭਾਵ ਅਧੀਨ ਫਰੀ ਫਾਲ ਵਿੱਚ ਵਸਤੂਆਂ ਦੀ ਸ਼੍ਰੇਣੀ। ਵਿਸ਼ੇਸ਼ ਅਹੀਮੀਅਤ ਵਾਲੀਆਂ ਗਤੀਆਂ ਵਾਲੀ ਇਹ ਨਵੀਂ ਸ਼੍ਰੇਣੀ ਵੀ, ਸਪੇਸ ਅਤੇ ਟਾਈਮ ਦੀ ਜੀਓਮੈਟਰੀ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦੀ ਹੈ- ਗਣਿਤਿਕ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਇਹ ਕਿਸੇ ਖਾਸ ਅਜਿਹੇ ਸੰਪਰਕ ਨਾਲ ਜੁੜੀ ਜੀਓਡੈਸਿਕ ਮੋਸ਼ਨ ਹੁੰਦੀ ਹੈ ਜੋ ਗਰੈਵੀਟੇਸ਼ਨਲ ਪੁਟੈਂਸ਼ਲ ਦੇ ਗਰੇਡੀਅੰਟ ਰਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਸਪੇਸ , ਇਸ ਬਣਤਰ ਵਿੱਚ, ਅਜੇ ਵੀ ਸਧਾਰਣ ਯੂਕਿਲਡਨ ਜੀਓਮੈਟਰੀ ਹੁੰਦੀ ਹੈ। ਫੇਰ ਵੀ, ਸਾਰੇ ਦਾ ਸਾਰਾ ਸਪੇਸ-ਟਾਈਮ ਜਿਆਦਾ ਗੁੰਝਲਦਾਰ ਚੀਜ਼ ਹੈ। ਜਿਵੇਂ ਵੱਖਰੇ ਟੈਸਟ ਪਾਰਟੀਕਲਾਂ ਦੀਆਂ ਫਰੀ ਫਾਲ ਟਰੈਜੈਕਟਰੀਆਂ ਦਾ ਪਿੱਛਾ ਕਰਦੇ ਹੋਏ ਸਰਲ ਕਾਲਪਨਿਕ ਪ੍ਰਯੋਗ ਕਰਕੇ ਸਾਬਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਕਿ ਅਜਿਹੇ ਸਪੇਸ-ਟਾਈਮ ਵੈਕਟਰਾਂ ਨੂੰ ਟਰਾਂਸਪੋਰਟ ਕਰਨ ਦਾ ਨਤੀਜਾ ਪਾਰਟੀਕਲਾਂ ਦੀ ਟਰੈਜੈਕਟਰੀ ਦੇ ਨਾਲ ਨਾਲ ਬਦਲੇਗਾ ਜੋ ਕਿਸੇ ਪਾਰਟੀਕਲ ਦੀ ਵਿਲੌਸਿਟੀ (ਟਾਈਮ-ਲਾਈਕ ਵੈਕਟਰ) ਦਰਸਾ ਸਕਦੇ ਹਨ : ਗਣਿਤਿਕ ਤੌਰ ਤੇ ਕਹਿੰਦੇ ਹੋਏ ਨਿਊਟੋਨੀਅਨ ਸੰਪਰਕ ਇੰਟੀਗਰੇਬਲ ਨਹੀਂ ਹੈ। ਇਸਤੋਂ, ਇਹ ਪਤਾ ਲਗਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਸਪੇਸਟਾਈਮ ਕਰਵਡ (ਮੁੜਿਆ ਹੋਇਆ) ਹੈ। ਨਤੀਜਾ, ਸਿਰਫ ਕੋਵੇਰੀਅੰਟ ਸੰਕਲਪਾਂ ਨੂੰ ਵਰਤਦੇ ਹੋਏ ਨਿਊਟੋਨੀਅਨ ਗਰੈਵਟੀ ਦੇ ਜੀਓਮੈਟ੍ਰਿਕ ਫਾਰਮੂਲਾ ਨਿਕਲਦਾ ਹੈ, ਯਾਨਿ ਕਿ, ਇੱਕ ਅਜਿਹਾ ਵਿਵਰਣ ਜੋ ਹਰੇਕ ਕਿਸਮ ਦੇ ਮਨਮਰਜੀ ਦੇ “ਕੋ-ਆਰਡੀਨੇਟ ਸਿਸਟਮ” ਵਿੱਚ ਵੀ ਨਾ ਬਦਲੇ। ਇਸ ਜੀਓਮੈਟ੍ਰਿਕ ਵਿਵਰਣ ਵਿੱਚ, ਟਾਈਡਲ ਪ੍ਰਭਾਵ- ਫਰੀ ਫਾਲ ਵਾਲੀ ਵਸਤੂ ਦਾ ਸਾਪੇਖਿਕ ਐਕਸਲਰੇਸ਼ਨ- ਸਬੰਧ ਦੇ ਡੈਰੀਵੇਟਿਵ ਨਾਲ ਰਿਲੇਟਿਡ ਹੁੰਦਾ ਹੈ, ਜੋ ਇਹ ਸਾਬਤ ਕਰ ਰਿਹਾ ਹੁੰਦਾ ਹੈ ਕਿ ਸੋਧੀ ਹੋਈ ਜੀਓਮੈਟਰੀ ਮਾਸ (ਪੁੰਜ) ਦੀ ਹੋਂਦ ਕਾਰਨ ਹੈ।
ਸਾਪੇਖਿਕ ਸਰਵ ਸਧਾਰਨੀਕਰਨ (ਰਿਲੇਟੀਵਿਸਟਿਕ ਜਨਰਲਾਈਜ਼ੇਸ਼ਨ)
ਸੋਧੋਜਿੰਨੀ ਦਿਲਚਸਪ ਜੀਓਮੈਟ੍ਰਿਕ ਨਿਉਟੋਨੀਅਨ ਗਰੈਵਟੀ ਹੋ ਸਕਦੀ ਹੈ, ਇਸਦੇ ਅਧਾਰ ਤੇ, ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ, ਸਿਰਫ ਸਪੈਸ਼ਲ ਸਾਪੇਖਿਕਤਾ ਮਕੈਨਿਕਸ ਦਾ ਇੱਕ ਸੀਮਤ ਕੇਸ ਹੈ। ਸਮਿੱਟਰੀ ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ : ਜਿੱਥੇ ਗਰੈਵਿਟੀ ਨੂੰ ਰੱਦ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਫਿਜ਼ਿਕਸ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਵਾਂਗ ਲੋਰੰਟਜ਼ ਇਨਵੇਰੀਅੰਟ ਹੈ ਨਾ ਕਿ ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਦੀ ਤਰਾਂ ਗੈਲੀਲੀ ਇਨਵੇਰੀਅੰਟ ਹੈ। (ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤੀ ਜਾ ਰਹੀ ਸਮਿੱਟਰੀ ਪੋਆਇਨਕੇਅਰ ਗਰੁੱਪ ਹੈ, ਜਿਸ ਵਿੱਚ ਤਬਦੀਲੀਆਂ ਅਤੇ ਰੋਟੇਸ਼ਨਾਂ ਸ਼ਾਮਿਲ ਹਨ)। ਦੋਹਾਂ ਦਰਮਿਅਨ ਅੰਤਰ ਮਹੱਤਵਪੂਰਨ ਬਣ ਜਾਂਦਾ ਹੈ ਜਦੋਂ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਦੇ ਨੇੜੇ ਪਹੁੰਚਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਉੱਚ-ਊਰਜਾ ਫੀਨੋਮੈਨਾ (ਵਰਤਾਰਿਆਂ) ਨਾਲ ਸਿਲਝਿਆ ਜਾਂਦਾ ਹੈ।
ਲੌਰੰਟਜ਼ ਸਮਿੱਟਰੀ ਨਾਲ, ਵਾਧੂ ਬਣਤਰਾਂ ਮੈਦਾਨ ਵਿੱਚ ਉਤਰ ਆਉਂਦੀਆਂ ਹਨ। ਉਹਨਾਂ ਨੂੰ ਲਾਈਟ ਕੋਨਾਂ ਦੇ ਸੈੱਟ ਨਾਲ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਲਾਈਟ ਕੋਨ ਇੱਕ ਕਾਰਣ ਸਬੰਧੀ ਬਣਤਰ ਰੱਖਦੀ ਹੈ: ਹਰੇਕ A ਘਟਨਾ ਦੇ ਲਈ, ਇੱਕ ਘਟਨਾਵਾਂ ਦਾ ਸੈੱਟ ਹੁੰਦਾ ਹੈ, ਜੋ ਸਿਧਾਂਤਕ ਤੌਰ ਤੇ, ਅਜਿਹੇ ਸਿਗਨਲਾਂ ਜਾਂ ਇੰਟਰੈਕਸ਼ਨਾਂ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ ਜਾਂ ਉਹਨਾਂ ਰਾਹੀਂ A ਕੋਲੋਂ ਪ੍ਰਭਾਵਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਜਿਹਨਾਂ ਨੂੰ ਪ੍ਰਕਾਸ਼ ਤੋਂ ਤੇਜ਼ ਸਫਰ ਕਰਨ ਦੀ ਜਰੂਰਤ ਨਹੀਂ ਹੁੰਦੀ (ਜਿਵੇਂ ਤਸਵੀਰ ਵਿੱਚ ਘਟਨਾ B ਦਰਸਾਈ ਗਈ ਹੈ), ਅਤੇ ਘਟਨਾਵਾਂ ਦੇ ਅਜਿਹੇ ਸੈੱਟ ਨਾਲ ਦਰਸਾਈ ਜਾਂਦੀ ਹੈ ਜਿਸਦੇ ਲਈ ਅਜਿਹਾ ਕੋਈ ਪ੍ਰਭਾਵ ਅਸੰਭਵ ਹੁੰਦਾ ਹੈ (ਜਿਵੇਂ ਤਦਵੀਰ ਵਿੱਚ ਘਟਨਾ C )। ਇਹ ਸੈੱਟ ਔਬਜ਼ਰਵਰ (ਨਿਗਰਾਨ) ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ। ਸੁਤੰਤਰਤਾ ਨਾਲ ਡਿੱਗਦੇ ਪਾਰਟੀਕਲਾਂ ਦੀਆਂ ਸੰਸਾਰ ਰੇਖਾਵਾਂ ਨਾਲ ਸਹੋਯੋਗ ਦੇ ਨਾਲ, ਲਾਈਟ ਕੋਨਾਂ ਨੂੰ ਸਪੇਸ-ਟਾਈਮ ਦਾ ਅੱਧਾ ਰੀਮਾਨੀਅਨ ਮੀਟ੍ਰਿਕ ਪੁਨਰਰਚਣ ਲਈ ਘੱਟੋ-ਘੱਟ ਕਿਸੇ ਪੌਜ਼ੇਟਿਵ ਸਕੇਲਰ ਫੈਕਟਰ ਤੱਕ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਗਣਿਤਿਕ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਇਹ ਇੱਕ ਕਨਫੌਰਮਲ ਬਣਤਰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦਾ ਹੈ।
ਸਪੈਸ਼ਲ ਰੀਲੇਟੀਵਿਟੀ ਨੂੰ ਗਰੈਵਟੀ ਦੀ ਗੈਰ-ਹਾਜ਼ਰੀ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਇਸਲਈ ਪ੍ਰੈਕਟੀਕਲ ਐਪਲੀਕੇਸ਼ਨਾਂ ਲਈ, ਇਹ ਇੱਕ ਢੁਕਵਾਂ ਮੌਡਲ ਹੈ ਜਦੋਂ ਵੀ ਗਰੈਵਿਟੀ ਨੂੱ ਰੱਦ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੋਵੇ। ਗਰੈਵਿਟੀ ਨੂੰ ਮੈਦਾਨ ਵਿੱਚ ਲਿਆ ਕੇ, ਅਤੇ ਫਰੀ ਫਾਲ ਦੇ ਸੰਸਾਰੀਕਰਨ ਨੂੰ ਮੰਨਦੇ ਹੋਏ, ਇੱਕ ਸਮਾਨ ਕਾਰਣਤਾ ਜਿਵੇਂ ਪਿਛਲੇ ਸੈਕਸ਼ਨ ਵਿੱਚ ਸੀ।, ਲਾਗੂ ਹੁੰਦੀ ਹੈ: ਕੋਈ ਵੀ ਗਲੋਬਲ ਇਨਰਸ਼ੀਅਲ ਫਰੇਮਾਂ ਨਹੀਂ ਹਨ। ਸਗੋਂ ਲੱਗਭੱਗ ਇਨਰਸ਼ੀਅਲ ਫਰੇਮਾਂ ਹਨ ਜੋ ਸੁਤੰਤਰਤਾ ਨਾਲ ਡਿੱਗ ਰਹੇ ਪਾਰਟੀਕਲਾਂ ਦੇ ਨਾਲ ਨਾਲ ਹਨ। ਸਪੇਸ-ਟਾਈਮ ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ ਬਦਲ ਕੇ ਕਹਿੰਦੇ ਹੋਏ: ਸਿੱਧੀਆਂ ਟਾਈਮ-ਲਾਈਕ ਲਾਈਨਾਂ ਜੋ ਗਰੈਵਟੀ ਤੋਂ ਮੁਕਤ ਕਿਸੇ ਇਨਰਸ਼ੀਅਲ ਫਰੇਮ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦੀਆਂ ਹਨ, ਨੁੰ ਮੋੜ ਕੇ ਅਜਿਹੀਆਂ ਰੇਖਾਵਾਂ ਬਣਾ ਦਿੱਤੋੀਆਂ ਜਾਂਦੀਆਂ ਹਨ ਜੋ ਇੱਕ ਦੂਜੀ ਸਾਪੇਖਿਕ ਵਕਰਿਤ ਹੁੰਦੀਆਂ ਹਨ, ਤੇ ਇਹ ਸੁਝਾਉਂਦੀਆਂ ਹਨ ਕਿ ਗਰੈਵਿਟੀ ਨੂੰ ਸ਼ਾਮਿਲ ਕਰਨ ਨਾਲ ਸਪੇਸ-ਟਾਈਮ ਜੀਓਮੈਟਰੀ ਵਿੱਬ ਤਬਦੀਲੀ ਦੀ ਜਰੂਰਤ ਪੈਂਦੀ ਹੈ।
ਸ਼ੁਰੂ ਵਿੱਚ, ਇਹ ਸਪਸ਼ਟ ਨਹੀਂ ਹੁੰਦਾ ਕਿ ਫਰੀ ਫਾਲ ਅਧੀਨ ਸਥਾਨਿਕ ਫਰੇਮਾਂ ਕੀ ਓਹਨਾਂ ਰੈਫਰੈਂਸ ਫਰੇਮਾਂ ਨਾਲ ਮਿਲਦੀਆਂ ਹਨ ਜਿਹਨਾਂ ਵਿੱਚ ਸਪੈਸ਼ਲ ਰੀਲੇਟੀਵਿਟੀ ਦੇ ਸਿਧਾਂਤ ਖਰੇ ਉਤਰਦੇ ਹਨ- ਉਹ ਥਿਊਰੀ ਪ੍ਰਕਾਸ਼ ਦੇ ਸੰਚਾਰ ਤੇ ਅਧਾਰਿਤ ਬਣੀ ਹੈ, ਅਤੇ ਇਸਤਰਾਂ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਜ਼ਮ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ, ਜਿਸਦਾ ਹੋ ਸਕਦਾ ਹੈ ਇੱਕ ਵੱਖਰਾ ਤਰਜੀਹ ਵਾਲਾ ਫਰੇਮਾਂ ਦਾ ਸੈੱਟ ਹੋਵੇ। ਪਰ ਸਪੈਸ਼ਕ-ਸਾਪੇਖਿਕ ਢਾਂਚਿਆਂ (ਰਿਲੇਟੀਵਿਸਟਿਕ ਫਰੇਮਾਂ) ਬਾਬਤ ਵੱਖਰੀਆਂ ਧਾਰਨਾਵਾਂ ਵਰਤ ਕੇ (ਜਿਵੇਂ ਧਰਤੀ ਫਿਕਸ ਕੀਤੀ ਹੋਵੇ, ਜਾਂ ਸੁਤੰਤਰ ਗਿਰਾਵਟ ਵਿੱਚ ਹੋਵੇ), ਗਰੈਵੀਟੇਸ਼ਨਲ ਰੈੱਡਸ਼ਿਫਟ ਲਈ ਵੱਖਰੇ ਅਨੁਮਾਨ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ। ਕਿਸੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਦੇ ਵਿੱਚੋਂ ਪ੍ਰਕਾਸ਼ ਦੇ ਸੰਚਾਰ ਦੌਰਾਨ ਜਿਸ ਤਰੀਕੇ ਨਾਲ ਪ੍ਰਕਾਸ਼ ਦੀ ਫਰੀਕੁਐਂਸੀ ਸ਼ਿਫਟ ਹੁੰਦੀ ਹੈ ਉਸਨੂੰ ਗਰੈਵੀਟੈਸ਼ਨਲ ਰੈੱਡਸ਼ਿਫਟ ਕਹਿੰਦੇ ਹਨ। ਵਾਸਤਵਿਕ ਨਾਪ ਦਿਖਾਉਂਦੇ ਹਨ ਕਿ ਫਰੀ-ਫਾਲਿੰਗ (ਸੁਤੰਤਰਤਾ ਨਾਲ ਡਿੱਗ ਰਹੀਆਂ) ਫਰੇਮਾਂ ਉਹ ਹੁੰਦੀਆਂ ਹਨ ਜਿਹਨਾਂ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਵਾਂਗ ਸੰਚਾਰਿਤ ਹੁੰਦਾ (ਲੰਘਦਾ) ਹੈ। ਇਸ ਕਥਨ ਦੇ ਸਰਵ ਸਧਾਰੀਕਰਨ (ਜਨਰਲਾਈਜੇਸ਼ਨ) ਨੂੰ ਆਈਨਸਟਾਈਨ ਇਕੁਈਵੇਲੈਂਸ ਪ੍ਰਿੰਸੀਪਲ (ਸਮਾਨਤਾ ਸਿਧਾਂਤ) ਦੇ ਨਾਮ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ ਕਿ ਸੁਤੰਤਰਤਾ ਨਾਲ ਡਿੱਗ ਰਹੀਆਂ (ਅਤੇ ਨਾ-ਘੁੰਮ ਰਹੀਆਂ) ਰੈਫਰੈਂਸ ਫਰੇਮਾਂ ਲਈ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਨਿਯਮ ਚੰਗੇ ਸੰਖੇਪ ਅਨੁਮਾਨ ਤੱਕ ਲਾਗੂ ਰਹਿੰਦੇ ਹਨ। ਇਹ ਸਮਾਨਤਾ ਸਿਧਾਂਤ ਗਰੈਵਟੀ ਨੂੰ ਸਪੈਸ਼ਲ ਸਾਪੇਖਿਕ ਭੌਤਿਕ ਵਿਗਿਆਨ ਵਿੱਚ ਸ਼ਾਮਿਲ ਕਰਨ ਦੇ ਸਰਵ ਸਧਾਰੀਕਰਨ ਲਈ ਅਤਿ ਜਰੂਰੀ ਸਿਧਾਂਤ ਹੈ।
ਇਹੀ ਪ੍ਰਯੋਗਿਕ ਆਂਕੜੇ ਦਿਖਾਉਂਦੇ ਹਨ ਕਿ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਅੰਦਰ ਘੜੀਆਂ ਰਾਹੀਂ ਨਾਪਿਆ ਗਿਆ ਵਕਤ- ਜਿਸਨੂੰ ਜੇਕਰ ਤਕੀਨੀਕੀ ਸ਼ਬਦਾਂ ਵਿੱਚ ਕਹਿਣਾ ਹੋਵੇ ਤਾਂ “ਪਰੌਪਰ ਟਾਈਮ”(ਸ਼ੁੱਧ ਵਕਤ)- ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਨਿਯਮ ਨਹੀਂ ਮੰਨਦਾ। ਸਪੇਸ-ਟਾਈਮ ਜੀਓਮੈਟਰੀ ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ, ਇਸਨੂੰ ਮਿੰਕੋਵਸਕੀ ਮੀਟ੍ਰਿਕ ਰਾਹੀਂ ਨਹੀਂ ਮਿਣਿਆ ਜਾਂਦਾ। ਨਿਊਟਨ ਵਾਲੇ ਮਾਮਲੇ ਵਾਂਗ, ਇਹ ਹੋਰ ਸਰਵ ਸਧਾਰਨ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਦਾ ਸੂਚਕ ਹੈ। ਸੀਖਮ ਪੈਮਾਨਿਆਂ ਉੱਤੇ, ਫਰੀ ਫਾਲ ਵਿੱਚ ਸਾਰੀਆਂ ਰੈਫਰੈਂਸ ਫਰੇਮਾਂ ਸਮਾਨ ਰਹਿੰਦੀਆਂ ਹਨ, ਅਤੇ ਲੱਗਭੱਗ ਮਿੰਕੋਵਸਕਿਅਨ ਹੁੰਦੀਆਂ ਹਨ। ਨਤੀਜੇ ਵਜੋਂ, ਹੁਣ ਅਸੀਂ ਮਿੰਕੋਵਸਕੀ ਸਪੇਸ ਦੇ ਇੱਕ ਕਰਵਡ (ਵਕਰਿਤ) ਸਰਵਸਧਾਰੀਕਰਨ (ਜਨਰਲਾਈਜੇਸ਼ਨ) ਨਾਲ ਨਿਬਟ ਰਹੇ ਹੁੰਦੇ ਹਾਂ। ਜਿਓਮੈਟਰੀ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ ਵਾਲਾ ਮੀਟ੍ਰਿਕ ਟੈਂਸਰ- ਜੋ ਖਾਸ ਤੌਰ ਤੇ ਇਹ ਦੱਸਦਾ ਹੈ ਕਿ ਕਿਵੇਂ ਲੰਬਾਈਆਂ ਅਤੇ ਐਂਗਲ ਮਿਣੇ ਜਾਂਦੇ ਹਨ- ਉਹ ਸਪੈਸ਼ਲ ਰਿਲੈਟੀਵਿਟੀ ਦਾ ਮਿੰਕੋਵਸਕੀ ਮੀਟ੍ਰਿਕ ਨਹੀਂ ਹੁੰਦਾ, ਇਹ ਇੱਕ ਅਰਧ- ਜਾਂ ਸੂਡੋਰੀਮਾਨੀਅਨ ਮੀਟ੍ਰਿਕ ਦੇ ਨਾਮ ਨਾਲ ਜਾਣੀ ਜਾਂਦੀ ਸਰਵਸਧਾਰੀਕਰਨ (ਜਨਰਲਾਈਜੇਸ਼ਨ) ਹੁੰਦੀ ਹੈ। ਇਸਤੋਂ ਹੋਰ ਅੱਗੇ, ਹਰੇਕ ਰੀਮਾਨੀਅਨ ਮੀਟ੍ਰਿਕ ਕੁਦਰਤੀ ਤੌਰ ਤੇ ਇੱਕ ਖਾਸ ਕਿਸਮ ਦੇ ਸੰਪਰਕ- ਲੇਵੀਸਿਵਿਟਾ ਕਨੈਕਸ਼ਨ ਨਾਲ ਜੁੜਿਆ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਇਹ, ਦਰਅਸਲ, ਓਹ ਕਨੈਕਸ਼ਨ ਹੁੰਦਾ ਹੈ ਜੋ ਇਕੁਈਵੇਲੈਂਸ ਪ੍ਰਿੰਸੀਪਲ ਤੇ ਖਰਾ ਉਤਰਦਾ ਹੈ ਅਤੇ ਸਪੇਸ ਨੂੰ ਸਥਾਨਿਕ ਤੌਰ ਤੇ ਮਿੰਕੋਵਸਕੀ ਬਣਾਉਂਦਾ ਹੈ। (ਯਾਨਿ ਕਿ, ਢੁਕਵੇਂ ਸਥਾਨਿਕ ਇਨਰਸ਼ੀਅਲ ਕੋਆਰਡੀਨੇਟਾਂ ਅੰਦਰ, ਮੀਟ੍ਰਿਕ ਮਿੰਕੋਵਸਕੀ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਇਸਦਾ ਪਹਿਲਾ ਪਾਰਸ਼ਲ/ਅੰਸ਼ਿਕ ਡੈਰੀਵੇਟਿਵ ਅਤੇ ਕਨੈਕਸ਼ਨ ਗੁਣਾਂਕ/ਕੋਐਫੀਸ਼ੈਂਟ ਮੁੱਕ ਜਾਂਦੇ ਹਨ)
ਆਈਨਸਟਾਈਨ ਦੀਆਂ ਸਮੀਕਰਨਾਂ
ਸੋਧੋਗਰੈਵਿਟੀ ਦੇ ਪ੍ਰਭਾਵਾਂ ਦੇ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਰੂਪ ਦਾ ਫਾਰਮੂਲਾ ਬਣਾ ਲੈਣ ਤੋਂ ਬਾਦ, ਗਰੈਵਿਟੀ ਦੇ ਸੋਮੇਂ (ਸੋਰਸ) ਦਾ ਸਵਾਲ ਬਾਕੀ ਰਹਿ ਜਾਂਦਾ ਹੈ। ਨਿਊਟੋਨੀਅਨ ਗਰੈਵਿਟੀ ਵਿੱਚ, ਸੋਮਾ ਮਾਸ ਹੁੰਦਾ ਹੈ। ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ, ਮਾਸ ਇੱਕ ਹੋਰ ਆਮ ਮਾਤਰਾ (ਕੁਆਂਟਿਟੀ) ਦੇ ਹਿੱਸੇ ਵਜੋਂ ਹੋਣ ਬਰਾਬਰ ਸਾਹਮਣੇ ਆਉਂਦਾ ਹੈ ਜਿਸਨੂੰ ਐਨਰਜੀ-ਮੋਮੈਂਟਮ ਟੈਂਸਰ ਕਹਿੰਦੇ ਹਨ, ਜੋ ਐਨਰਜੀ (ਊਰਜਾ) ਅਤੇ ਮੋਮੈਂਟਮ ਡੈਂਸਟੀਆਂ ਦੋਵਾਂ ਨੂੰ ਸਟ੍ਰੈੱਸ (ਯਾਨਿ ਕਿ ਪ੍ਰੈੱਸ਼ਰ ਅਤੇ ਸ਼ੀਅਰ) ਸਮੇਤ ਸ਼ਾਮਿਲ ਕਰਦਾ ਹੈ। ਇਕੁਈਵੇਲੈਂਸ ਪ੍ਰਿੰਸੀਪਲ ਨੂੰ ਵਰਤ ਕੇ, ਇਸ ਟੈਂਸਰ ਦਾ ਅਸਾਨੀ ਨਾਲ ਵਕਰਿਤ ਸਪੇਸ-ਟਾਈਮ ਤੱਕ ਸਰਵਸਧਾਰੀਕਰਨ (ਜਨਰਲਾਈਜੇਸ਼ਨ) ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਜੀਓਮੈਟ੍ਰਿਕ ਨਿਊਟੋਨੀਅਨ ਗਰੈਵਿਟੀ ਨਾਲ ਸਮਾਨਤਾ ਉੱਪਰ ਹੋਰ ਅੱਗੇ ਜਾਂਦੇ ਹੋਏ, ਇਹ ਮੰਨ ਲੈਣਾ ਕੁਦਰਤੀ ਗੱਲ ਹੈ ਕਿ ਗਰੈਵਿਟੀ ਲਈ ਫੀਲਡ ਇਕੁਏਸ਼ਨ ਇਸ ਟੈਂਸਰ ਅਤੇ ਰਿੱਚੀ ਟੈਂਸਰ ਨਾਲ ਸਬੰਧਿਤ ਹੈ, ਰਿੱਚੀ ਟੈਂਸਰ ਜੋ- ਟਾਈਡਲ ਪ੍ਰਭਾਵਾਂ ਦੀ ਇੱਕ ਖਾਸ ਸ਼੍ਰੇਣੀ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ: ਟਾਈਡਲ ਪ੍ਰਭਾਵ ਉਹ ਹੁੰਦੇ ਹਨ ਜੋ ਸ਼ੁਰੂਆਤੀ ਰੈਸਟ ਉੱਤੇ ਰੱਖੇ, ਅਤੇ ਫੇਰ ਫਰੀ ਫਾਲ ਕਰਦੇ ਹੋਏ ਟੈਸਟ ਪਾਰਟੀਕਲਾਂ ਦੇ ਛੋਟੇ ਬੱਦਲ (ਕਲਾਊਡ) ਲਈ ਘਣਫਲ ਵਿੱਚ ਤਬਦੀਲੀ ਹੁੰਦੀ ਹੈ। ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ, ਐਨਰਜੀ-ਮੋਮੈਂਟਮ ਦੀ ਕੰਜ਼ਰਵੇਸ਼ਨ (ਸੁਰੱਖਿਅਤਾ) ਇਸ ਕਥਨ ਨਾਲ ਸਬੰਧਿਤ ਹੈ ਕਿ ਮੋਮੈਂਟਮ ਟੈਂਸਰ ਡਾਇਵਰਜੈਂਸ-ਫਰੀ (ਫੈਲਾਓ-ਮੁਕਤ) ਹੁੰਦਾ ਹੈ। ਇਹ ਫਾਰਮੂਲਾ, ਪਾਰਸ਼ਲ ਡੈਰੀਵੇਟਿਵਾਂ ਨੂੰ ਡਿੱਫਰੈਂਸ਼ੀਅਲ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਵਿੱਚ ਪੜੇ ਇਹਨਾਂ ਦੇ ਕੋਵੇਰੀਅੰਟ ਡੈਰੀਵੇਟਿਵਾਂ ਕਰਵਡ-ਮੈਨੀਫੋਲਡ ਕਾਉਂਟਰਪਾਰਟਸ (ਵਕਰਿਤ ਬਹੁਪਰਤ ਵਿਰੋਧੀ ਹਿੱਸਿਆਂ) ਨਾਲ ਬਦਲ ਕੇ ਵਕਰਿਤ ਸਪੇਸ-ਟਾਈਮ ਤੱਕ ਸਰਵਸਧਾਰੀਕਰਨ (ਜਨਰਲਾਈਜੇਸ਼ਨ) ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਵਾਧੂ ਸ਼ਰਤ ਨਾਲ, ਐਨਰਜੀ-ਮੋਮੈਂਟਮ ਟੈਂਸਰ ਦਾ ਕੋਵੇਰੀਅੰਟ ਡਾਇਵਰਜੰਸ, ਅਤੇ ਇਕੁਏਸ਼ਨ ਦੇ ਪਰਲੇ ਪਾਸੇ ਜੋ ਵੀ ਹੋਵੇ, ਜ਼ੀਰੋ ਹੁੰਦਾ ਹੈ- ਸਮੀਕਰਨਾਂ ਦਾ ਸਰਲ ਸੈੱਟ ਹੈ ਜਿਸਨੂੰ ਆਈਨਸਟਾਈਨ ਦੀਆਂ ਫੀਲਡ ਇਕੁਏਸ਼ਨਾਂ (ਜਾਂ ਸਿਰਫ ਆਈਨਸਟਾਈਨ ਇਕੁਏਸ਼ਨਾਂ ) ਕਿਹਾ ਜਾਂਦਾ ਹੈ।
ਖੱਬੇ ਪਾਸੇ ਆਈਨਸਟਾਈਨ ਟੈਂਸਰ ਹੈ, ਜੋ ਰਿੱਚੀ ਟੈਂਸਰ ਅਤੇ ਮੀਟ੍ਰਿਕ ਦਾ ਖਾਸ ਡਾਇਵਰਜੰਸ-ਫਰੀ (ਫੈਲਾਓ-ਮੁਕਤ) ਮੇਲ ਹੈ। ਜਿੱਥੇ ਸਮਿਟਰਿੱਕ ਹੁੰਦਾ ਹੈ। ਖਾਸ ਤੌਰ ਤੇ,
ਕਰਵੇਚਰ ਸਕੇਲਰ ਹੁੰਦਾ ਹੈ। ਰਿੱਚੀ ਟੈਂਸਰ ਖੁਦ ਹੋਰ ਆਮ ਰੀਮੈਨ ਕਰਵੇਚਰ ਟੈਂਸਰ ਨਾਲ ਇਸਤਰਾਂ ਸਬੰਧ ਰੱਖਦਾ ਹੈ;
ਸੱਜੇ ਪਾਸੇ ਐਨਰਜੀ-ਮੋਮੈਂਟਮ ਟੈਂਸਰ ਹੈ। ਸਾਰੇ ਟੈਂਸਰਾੰ ਨੂੰ ਸੰਖੇਪ ਸੂਚਕ ਚਿੰਨਾਂ (ਅਬਸਟ੍ਰੈਕਟ ਇੰਡੈਕਸ ਨੋਟੇਸ਼ਨ) ਵਿੱਚ ਲਿਖਿਆ ਗਿਆ ਹੈ। ਥਿਊਰੀ ਦੇ ਅਨੁਮਾਨ ਨੂੰ ਗ੍ਰਹਿਾਂ ਦੇ ਚੱਕਰਪਥਾਂ (ਪਲੈਨਟਰੀ ਔਰਬਿਟਸ) ਲਈ ਨਿਰੀਖਣਾਂ ਦੇ ਨਤੀਜਿਆਂ ਨਾਲ ਮਿਲਾ ਕੇ, ਅਨੁਪਾਤਿਕ ਸਥਿਰਾਂਕ (ਪਰੋਪੋਸ਼ਨਲਟੀ ਕੌਂਸਟੈਂਟ) ਨੂੰ κ = 8πG/c4 ਦੇ ਰੂਪ ਵਿੱਚ,ਗਰੈਵੀਟੇਸ਼ਨਲ ਸਥਿਰਾਂਕ G, ਅਤੇ ਲਾਈਟ ਦੀ ਸਪੀਡ c ਦੇ ਨਾਲ ਫਿਕਸ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ (ਜਾਂ, ਇਸਦੇ ਸਮਾਨ ਹੀ, ਇਹ ਯਕੀਨੀ ਬਣਾਉਂਦੇ ਹੋਏ ਕਿ ਕਮਜੋਰ-ਗਰੈਵਿਟੀ ਘੱਟ-ਸਪੀਡ ਹੱਦ ਨਿਊਟੋਨੀਅਨ ਮਕੈਨਿਕਸ ਹੈ)। ਜਦੋਂ ਕੋਈ ਪਦਾਰਥ (ਮੈਟਰ) ਮੌਜੂਦ ਨਹੀਂ ਹੁੰਦਾ, ਤਾਂ ਜੋ ਐਨਰਜੀ-ਮੋਮੈਂਟਮ ਟੈਂਸਰ ਮੁੱਕ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਨਤੀਜਾ ਇਹ ਵੈਕੱਮ ਆਈਨਸਟਾਈਨ ਇਕੁਏਸ਼ਨਾਂ ਹੁੰਦਾ ਹੈ;
ਇਹਨਾਂ ਹੀ ਸੰਪਤੀਆਂ ਉੱਤੇ ਅਧਾਰਿਤ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਬਦਲ ਹਨ, ਜੋ ਵਾਧੂ ਨਿਯਮ ਅਤੇ ਐਂਡ/ਔਰ ਕਮੀਆਂ ਨੂੰ ਸ਼ਾਮਿਲ ਕਰਦੇ ਹਨ, ਅਤੇ ਵੱਖਰੀਆਂ ਫੀਲਡ ਸਮੀਕਰਨਾਂ ਵੱਲ ਲਿਜਾਂਦੇ ਹਨ। ਉਦਾਹਰਨਾਂ ਹਨ – ਬਰਾਂਸ-ਡਿੱਕੇ ਥਿਊਰੀ, ਟੈੱਲੀਪੈਰਲਲਿਜ਼ਮ, ਅਤੇ ਆਈਨਸਟਾਈਨ-ਕਾਰਟਨ ਥਿਊਰੀ।
ਪਰਿਭਾਸ਼ਾ ਅਤੇ ਮੁਢਲੇ ਉਪਯੋਗ
ਸੋਧੋਪਿਛਲੇ ਸੈਕਸ਼ਨ ਵਿੱਚ ਲਿਖੀ ਗਈ ਸਮੱਗਰੀ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ ਲਈ ਸਾਰੀ ਲਾਜ਼ਮੀ ਜਾਣਕਾਰੀ ਰੱਖਦੀ ਹੈ, ਇਸਦੀਆਂ ਮੁੱਖ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦਾ ਵਿਵਰਣ ਦਿੰਦੀ ਹੈ, ਅਤੇ ਭੌਤਿਕ ਵਿਗਿਆਨ ਅੰਦਰ ਅਤਿ ਮਹੱਤਵਪੂਰਨ ਮਹੱਤਤਾ ਦਾ ਇੱਕ ਸਵਾਲ ਕਰਦੀ ਹੈ ਕਿ, ਮੌਡਲ ਬਣਾਉਣ ਲਈ ਥਿਊਰੀ ਕਿਵੇਂ ਵਰਤੀ ਜਾ ਸਕਦੀ ਹੈ।
ਪਰਿਭਾਸ਼ਾ ਅਤੇ ਮੁਢਲੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ
ਸੋਧੋਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਗਰੈਵੀਟੇਸ਼ਨ ਦੀ ਮੀਟ੍ਰਿਕ ਥਿਊਰੀ ਹੈ। ਇਸਦੇ ਗਰਭ ਵਿੱਚ ਆਈਨਸਟਾਈਨ ਦੀਆਂ ਇਕੁਏਸ਼ਨਾਂ ਹਨ, ਜੋ ਕਿਸੇ 4-ਅਯਾਮੀ ਸਪੇਸਟਾਈਮ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰਨ ਵਾਲੇ ਸੂਡੋਰਿਮਾਨੀਅਨ ਮੈਨੀਫੋਲਡ, ਅਤੇ ਉਸ ਵਿੱਚ ਪਾਏ ਜਾਣ ਵਾਲੇ ਐਨਰਜੀ-ਮੋਮੈਂਟਮ ਦੀ ਜੀਓਮੈਟਰੀ ਦਰਮਿਆਨ ਰਿਸ਼ਤਾ ਬਿਆਨ ਕਰਦੀਆਂ ਹਨ । ਘਟਨਾਕ੍ਰਮ ਜੋ ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਵਿੱਚ, ਗਰੈਵਟੀ (ਜਿਵੇਂ ਫਰੀ ਫਾਲ, ਔਰਬਿਟਲ ਮੋਸ਼ਨ, ਅਤੇ ਸਪੇਸਕਰਾਫਟ ਟਰੈਜੈਕਟਰੀਆਂ) ਦੇ ਫੋਰਸ ਦੇ ਕਾਰਜ ਨੂੰ ਜਿਮੇਵਾਰ ਮੰਨਦਾ ਹੈ, ਉਹ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ ਸਪੇਸਟਾਈਮ ਦੀ ਵਕਰਿਤ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਅੰਦਰ ਇਨਰਸ਼ੀਅਲ ਮੋਸ਼ਨ (ਗਤੀ) ਨਾਲ ਜੁੜਿਆ ਹੁੰਦਾ ਹੈ ; ਵਸਤੂਆਂ ਨੂੰ ਉਹਨਾਂ ਦੇ ਕੁਦਰਤੀ, ਸਿੱਧੇ ਰਸਤਿਆਂ ਤੋਂ ਮੋੜਨ ਵਾਲਾ ਕੋਈ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੋਰਸ ਨਹੀਂ ਹੁੰਦਾ। ਸਗੋਂ, ਗਰੈਵਟੀ ਦਾ ਸਬੰਧ ਸਪੇਸ ਅਤੇ ਸਮੇਂ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਵਿੱਚ ਤਬਦੀਲੀਆਂ ਨਾਲ ਜੁੜਿਆ ਹੁੰਦਾ ਹੈ, ਜੋ ਬਦਲੇ ਵਿੱਚ ਵਸਤੂਆਂ ਦੁਆਰਾ ਕੁਦਰਤੀ ਤੌਰ ਤੇ ਅਪਣਾਇਆ ਜਾਣ ਵਾਲਾ ਸਿੱਧੇ ਤੋਂ ਸਿੱਧਾ ਰਸਤਾ ਬਦਲ ਦਿੰਦੀਆਂ ਹਨ। ਇਸਦੇ ਨਤੀਜੇ ਵਜੋਂ, ਪਦਾਰਥ ਦੇ ਐਨਰਜੀ-ਮੋਮੈਂਟਮ ਦੁਅਰਾ ਕਰਵੇਚਰ ਪੈਦਾ ਹੁੰਦਾ ਹੈ। ਰਿਲੇਟੀਵਿਸਟ ਜੌਹਨ ਅਰਕੀਬਲਡ ਵੀਲਰ ਦੀ ਵਿਆਖਿਆ ਕਰਦੇ ਹੋਏ, ਸਪੇਸਟਾਈਮ ਪਦਾਰਥ ਨੂੰ ਦੱਸਦਾ ਹੈ ਕਿ ਕਿਵੇਂ ਗਤੀ ਕਰਨੀ ਹੈ; ਪਦਾਰਥ ਸਪੇਸਟਾਈਮ ਨੂੰ ਦੱਸਦਾ ਹੈ ਕਿ ਕਿਵੇਂ ਵਕਰਿਤ (ਕਰਵ) ਹੋਣਾ ਹੈ।
ਜਦੋਂਕਿ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਕਲਾਸੀਕਲ ਭੌਤਿਕ ਵਿਗਿਆਨ ਦੇ ਸਕੇਲਰ ਗਰੈਵੀਟੇਸ਼ਨਲ ਪੁਟੈਸ਼ਲ ਨੂੰ ਇੱਕ ਸਮਿੱਟਰਿਕ “ਰੈਂਕ-2 ਟੈਂਸਰ” ਨਾਲ ਬਦਲ ਦਿੰਦੀ ਹੈ, ਇਸ ਨਾਲ ਰੈਂਕ-2 ਟੈਂਸਰ, ਕੁੱਝ ਸੀਮਤ ਮਾਮਲਿਆਂ ਵਿੱਚ, ਸਕੇਲਰ ਗਰੈਵੀਟੇਸ਼ਨਲ ਪੁਟੈਸ਼ਲ ਤੱਕ ਘਟ ਜਾਂਦਾ ਹੈ। ਕਮਜੋਰ ਗ੍ਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡਾਂ ਅਤੇ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਦੇ ਤੁਲਨਾਤਮਿਕ ਧੀਮੀ ਗਤੀ ਲਈ, ਥਿਊਰੀ ਦੇ ਅਨੁਮਾਨ ਨਿਊਟਨ ਦੇ ਸੰਸਾਰਿਕ ਗਰੈਵੀਟੇਸ਼ਨ ਵਾਲੇ ਨਿਯਮਾਂ ਦੇ ਅਨੁਮਾਨਾਂ ਤੱਕ ਸੁੰਗੜ ਜਾਂਦੇ ਹਨ।
ਕਿਉਂਕਿ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਟੈਂਸਰਾਂ ਨੂੰ ਵਰਤ ਕੇ ਰਚੀ ਗਈ ਹੈ, ਇਸਲਈ ਇਹ ਸਰਵਸਧਾਰਨ ਕੋਵੇਰੀਐਂਸ ਦਿਖਾਉਂਦੀ ਹੈ : ਇਸਦੇ ਸਿਧਾਂਤ – ਅਤੇ ਆਮ ਸਾਪੇਖਿਕ ਬਣਤਰ ਅੰਦਰ ਰਚੇ ਹੋਰ ਫਾਰਮੂਲਾ ਸਿਧਾਂਤ- ਸਾਰੇ ਕੋਆਰਡੀਨੇਟ ਸਿਸਟਮਾਂ ਵਿੱਚ ਇੱਕੋ ਸ਼ਕਲ ਬਣਸਾ ਲੈਂਦੇ ਹਨ। ਹੋਰ ਅੱਗੇ, ਇਹ ਥਿਊਰੀ ਕੋਈ ਵੀ ਇਨਵੇਰੀਅੰਟ ਜੀਓਮੈਟ੍ਰਿਕ ਬੈਕਗਰਾਊਂਡ ਸਟਰਕਚਰ (ਸਹਿਯੋਗਿਕ ਰੇਖਾਗਣਿਤਿਕ ਪਿਛੋਕੜ ਬਣਤਰ) ਨਹੀਂ ਰੱਖਦੀ, ਯਾਨਿ ਕਿ, ਇਹ ਪਿਛੋਕੜ ਤੋਂ ਆਤਮਨਿਰਭਰ ਹੈ। ਇਹ ਇਸਤਰਾਂ ਇੱਕ ਹੋਰ ਜਿਆਦਾ ਸਖਤ ਜਨਰਲ ਪ੍ਰਿੰਸੀਪਲ ਔਫ ਰਿਲੇਟੀਵਿਟੀ ਬਣ ਜਾਂਦੀ ਹੈ, ਜਿਸ ਦਾ ਨਾਮ ਹੈ ਕਿ ਸਾਰੇ ਦਰਸ਼ਕਾਂ ਲਈ ਭੌਤਿਕ ਵਿਗਿਆਨ ਦੇ ਸਿਧਾਂਤ ਓਹੀ ਰਹਿੰਦੇ ਹਨ। ਸਥਾਨਿਕ ਤੌਰ ਤੇ, ਜਿਵੇਂ ਸਮਾਨਤਾ ਸਿਧਾਂਤ (ਇਕੁਈਵੇਲੈਂਸ ਪ੍ਰਿੰਸੀਪਲ) ਵਿੱਚ ਸਮਝਾਇਆ ਗਿਆ ਹੈ, ਸਪੇਸਟਾਈਮ ਮਿੰਕੋਵਸਕਿਅਨ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਭੌਤਿਕ ਵਿਗਿਆਨ ਦੇ ਨਿਯਮ ਲੋਕਲ (ਸਥਾਨਿਕ) ਲੌਰੰਟਜ਼ ਇਨਵੇਰੀਅੰਸ (ਸਥਿਰਤਾ) ਦਾ ਗੁਣ ਰੱਖਦੇ ਹਨ।
ਮਾਡਲ ਉਸਾਰੀ
ਸੋਧੋਜਨਰਲ-ਰਿਲੇਟੀਵਿਸਟਿਕ ਮਾਡਲ ਬਿਲਡਿੰਗ ਦਾ ਧੁਰ ਦਾ ਸੰਕਲਪ ਆਈਨਸਟਾਈਨ ਦੀਆਂ ਸਮੀਕਰਨਾਂ ਦਾ ਹੱਲ ਹੈ। ਪਦਾਰਥ (ਮੈਟਰ) ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਲਈ ਢੁਕਵੀਆਂ ਸਮੀਕਰਨਾਂ ਅਤੇ ਆਈਨਸਟਾਈਨ ਸਮੀਕਰਨਾਂ, ਦੋਵਾਂ ਦੇ ਦਿੱਤੇ ਹੋਣ ਨਾਲ, ਅਜਿਹਾ ਹੱਲ ਇੱਕ ਖਾਸ ਸੇਮੀ-ਰੀਮਾਨੀਅਨ ਮੈਨੀਫੋਲਡ (ਆਮਤੌਰ ਤੇ ਖਾਸ ਕੋਆਰਡੀਨੇਟਾਂ ਵਿੱਚ ਮੀਟ੍ਰਿਕ ਦੇਣ ਰਾਹੀਂ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਹੋਇਆ), ਅਤੇ ਓਸ ਮੈਨਫੋਲਡ (ਬਹੁਪਰਤ) ਉੱਤੇ ਪਰਿਭਾਸ਼ਿਤ ਮੈਟਰ ਫੀਲਡ ਨਾਲ ਰਚਿਆ ਜਾਂਦਾ ਹੈ। ਮੈਟਰ ਅਤੇ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਜਰੂਰ ਹੀ ਆਈਨਸਟਾਈਨ ਦੀਆਂ ਸਮੀਕਰਨਾਂ ਤੇ ਖਰੇ ਉਤਰਦੇ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ, ਇਸਲਈ ਖਾਸ ਕਰ ਕੇ, ਮੈਟਰ ਦਾ ਐਨਰਜੀ-ਮੋਮੈਂਟਮ ਟੈਂਸਰ ਜਰੂਰ ਹੀ ਡਾਇਵਰਜੰਸ-ਫਰੀ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਬੇਸ਼ੱਕ ਪਦਾਰਥ ਨੂੰ ਵੀ ਸਭ ਉਹਨਾਂ ਵਾਧੂ ਸਮੀਕਰਨਾਂ ਤੇ ਖਰਾ ਉਤਰਦੇ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ ਜੋ ਉਸਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਉੱਤੇ ਲਾਗੂ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹੋਣ। ਸੰਖੇਪ ਵਿੱਚ, ਅਜਿਹੇ ਕਿਸੇ ਹੱਲ ਨੂੰ ਮਾਡਲ ਬ੍ਰਹਿਮੰਡ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ ਜੋ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਸਿਧਾਂਤ ਮੰਨਦਾ ਹੋਵੇ, ਅਤੇ ਸੰਭਵ ਤੌਰ ਤੇ ਮੌਜੂਦ ਕਿਸੇ ਵੀ ਤਰਾਂ ਦੇ ਪਦਾਰਥ ਨੂੰ ਕੰਟਰੋਲ ਕਰਦੇ ਵਾਧੂ ਕਨੂੰਨਾਂ ਨੂੰ ਵੀ ਮੰਨਦਾ ਹੋਵੇ।
ਆਈਨਸਟਾਈਨ ਦੀਆਂ ਇਕੁਏਸ਼ਨਾਂ ਗੈਰ-ਰੇਖਿਕ (ਨੌਨਲੀਨੀਅਰ) ਅੰਸ਼ਿਕ (ਪਾਰਸ਼ਲ) ਡਿੱਫਰੈਂਸ਼ੀਅਲ ਇਕੁਏਸ਼ਨਾਂ ਹਨ ਅਤੇ, ਇਸਤਰਾਂ, ਇੰਨਬਿੰਨ ਹੱਲ ਕਰਨੀਆਂ ਮੁਸ਼ਕਲ ਹਨ। ਫੇਰ ਵੀ, ਕਈ ਇੰਨਬਿੰਨ ਸਲਿਊਸ਼ਨ (ਹੱਲ) ਗਿਆਤ ਹਨ, ਭਾਵੇਂ ਸਿਰਫ ਕੁੱਝ ਹੀ ਸਿੱਧਾ ਭੌਤਿਕੀ ਉਪਯੋਗ ਰੱਖਦੇ ਹਨ। ਸਭ ਤੋਂ ਚੰਗੀ ਤਰਾਂ ਪ੍ਰਸਿੱਧ ਹੱਲ, ਅਤੇ ਭੌਤਿਕ ਵਿਗਿਆਨ ਦੇ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਤੋਂ ਸਭ ਤੋਂ ਜਿਆਦਾ ਦਿਲਚਸਪ ਹੱਲ, ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਹੱਲ, ਰੀਸ਼ਨਰ-ਨੌਰਡਸਟਰੌਮ ਹੱਲ ਅਤੇ ਕੱਰ ਮੀਟ੍ਰਿਕ ਹੱਲ ਹਨ, ਜਿਹਨਾਂ ਵਿੱਚੋਂ ਹਰੇਕ ਹੱਲ ਕਿਸੇ ਹੋਰ ਤਰੀਕੇ ਨਾਲ ਖਾਲੀ ਬ੍ਰਹਿਮੰਡ ਅੰਦਰ ਬਲੈਕ ਹੋਲ ਦੀ ਕਿਸੇ ਕਿਸਮ, ਅਤੇ ਫਰੇਡਮਨ-ਲੇਮਿਟਰੇ-ਰੌਬਰਸਟਨ-ਵਾਕਰ ਅਤੇ ਡਿ ਸਿੱਟਰ ਯੂਨੀਵਰਸਜ਼, ਨਾਲ ਸਬੰਧਿਤ ਹੈ। ਹਰੇਕ ਇੱਕ ਫੈਲ ਰਹੇ ਕੌਸਮੌਸ ਨੂੰ ਬਿਆਨ ਕਰਦਾ ਹੈ। ਮਹਾਨ ਸਿਧਾਂਤਕ ਦਿਲਚਸਪੀ ਦੇ ਇੰਨਬਿੰਨ ਹੱਲਾਂ ਵਿੱਚ ਗੋਡਲ ਯੂਨੀਵਰਸ (ਜੋ ਵਕਰਿਤ ਸਪੇਸ-ਟਾਈਮ ਵਿੱਚ ਟਾਈਮ-ਟਰੈਵਲ ਦੀ ਗੁਪਤ ਸੰਭਾਵਨਾ ਨੂੰ ਖੋਲਦਾ ਹੈ), ਟਾਓਬ-ਨੱਟ ਸਲਿਊਸ਼ਨ (ਇੱਕ ਮਾਡਲ ਬ੍ਰਹਿਮੰਡ ਜੋ ਹੋਮੋਜੀਨੀਅਸ ਹੈ, ਪਰ ਐਨੀਸੋਟ੍ਰਿੌਪਿਕ ਹੁੰਦਾ ਹੈ), ਅਤੇ ਐਂਟੀ-ਡੀ-ਸਿੱਟਰੇ ਸਪੇਸ (ਜੋ ਹੁਣੇ ਮਾਲਡਾਸੀਨਾ ਕੰਜੈਕਚਰ ਨਾਮ ਦੇ ਸੰਦਰਭ ਵਿੱਚ ਪ੍ਰਬਲ ਹੋਇਆ ਹੈ) ਸ਼ਾਮਿਲ ਹਨ।
ਇੰਨਬਿੰਨ ਹੱਲ ਖੋਜਣ ਦੀ ਕਠਿਨਾਈ ਦਿੱਤੇ ਜਾਣ ਤੇ, ਆਈਨਸਟਾਈਨ ਫੀਲਡ ਇਕੁਏਸ਼ਨਾਂ ਕਦੇ ਕਦੇ ਨਿਉਮੈਰੀਕਲ ਇੰਟੀਗਰੇਸ਼ਨ ਰਾਹੀਂ ਕੰਪਿਊਟਰ ਤੇ ਵੀ ਹੱਲ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ, ਜਾਂ ਇੰਨਬਿੰਨ ਹੱਲਾਂ ਦੀਆਂ ਸੂਖਮ ਗੜਬੜੀਆਂ ਤੇ ਵਿਚਾਰ ਕਰਕੇ ਹੱਲ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਨਿਉਮੈਰੀਕਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਖੇਤਰ ਵਿੱਚ, ਸਪੇਸਟਾਈਮ ਦੀ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਅਤੇ ਦੋ ਟਕਰਾ ਰਹੀਆਂ ਬਲੈਕ ਹੋਲਾਂ ਵਰਗੀਆਂ ਦਿਲਚਸਪ ਪ੍ਰਸਥਿਤੀਆਂ ਲਈ ਆਈਨਸਟਾਈਨ ਦੀਆਂ ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਦਾ ਰੂਪ ਬਦਲਣ ਲਈ ਸ਼ਕਤੀਸ਼ਾਲੀ ਕੰਪਿਊਟਰ ਲਗਾਏ ਗਏ ਹਨ। ਸਿਧਾਂਤ ਮੁਤਾਬਿਕ, ਅਜਿਹੇ ਤਰੀਕੇ ਕਿਸੇ ਵੀ ਸਿਸਟਮ ਤੇ ਲਾਗੂ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ, ਜੇਕਰ ਜਰੂਰਤ ਮੁਤਾਬਿਕ ਕਾਫੀ ਕੰਪਿਊਟਰ ਸੋਮੇ ਦਿੱਤੇ ਹੋਣ, ਅਤੇ ਅਜਿਹੇ ਤਰੀਕੇ ਨੇਕਡ ਸਿੰਗੁਲਰਟੀਜ਼ ਚਰਗੇ ਮੁਢਲੇ ਸਵਾਲਾਂ ਦਾ ਜਵਾਬ ਦੇ ਸਕਦੇ ਹਨ। ਲੱਗਭੱਗ ਹੱਲ ਪਰਚਰਬੇਸ਼ਨ ਥਿਊਰੀਆਂ ਜਿਵੇਂ ਲੀਨੀਅਰਾਈਜ਼ਡ ਗਰੈਵਟੀ (ਰੇਖਿਕ ਕੀਤੀ ਹੋਈ) ਅਤੇ ਇਸਦੀ ਜਨਰਲਾਈਜੇਸ਼ਨ, ਪੋਸਟ-ਨਿਊਟੋਨੀਅਨ ਐਕਸਪੈਨਸ਼ਨ ਰਾਹੀਂ ਵੀ ਖੋਜੇ ਜਾ ਸਕਦੇ ਹਨ, ਦੋਵੇਂ ਥਿਊਰੀਆਂ ਆਈਨਸਟਾਈਨ ਨੇ ਵਿਕਸਿਤ ਕੀਤੀਆਂ ਸਨ। ਬਾਦ ਵਾਲੀ ਥਿਊਰੀ ਕਿਸੇ ਸਪੇਸਟਾਈਮ ਦੀ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਦੇ ਹੱਲ ਲਈ ਇੱਕ ਸਮਿੱਟਰਿਕ ਪਹੁੰਚ ਹੈ, ਜੋ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਮੁਕਾਬਲੇ ਧੀਮੀ ਗਤੀ ਨਾਲ ਗਤੀਸ਼ੀਲ ਪਦਾਰਥ ਦਾ ਵਿਸਥਾਰ ਵੰਡ ਰੱਖਦੀ ਹੈ। ਵਿਸਥਾਰ ਵਿੱਚ ਸ਼ਬਦਾਂ ਦਾ ਇੱਕ ਕਾਫਲਾ ਸ਼ਾਮਿਲ ਹੈ ; ਪਹਿਲਾ ਸ਼ਬਦ ਨਿਊਟੋਨੀਅਨ ਗਰੈਵਿਟੀ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰਦਾ ਹੈ, ਜਦੋਂ ਕਿ ਬਾਦ ਵਾਲਾ ਸ਼ਬਦ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਕਾਰਣ ਨਿਊਟਨ ਦੀ ਥਿਊਰੀ ਵਿੱਚ ਕੀਤੀਆਂ ਸੂਖਮ ਸ਼ੋਧਾਂ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰਦਾ ਹੈ। ਇਸ ਵਿਸਥਾਰ ਦੀ ਇੱਕ ਸ਼ਾਖਾ ਪੈਰਾਮੀਟ੍ਰਾਈਜ਼ਡ ਪੋਸਟ ਨਿਊਟੋਨੀਅਨ (PPN) ਫਾਰਮੂਲਾ ਬਣਤਰ ਹੈ, ਜੋ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਅਤੇ ਇਸਦੇ ਬਦਲ ਵਾਲੀਆਂ ਅਲਟਰਨੇਟ ਥਿਊਰੀਆਂ ਦਰਮਿਅਨ ਮਾਤਰਿਕ ਤੁਲਨਾਵਾਂ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰਦਾ ਹੈ।
ਆਈਨਸਟਾਈਨ ਦੀ ਥਿਊਰੀ ਦੇ ਨਤੀਜੇ
ਸੋਧੋਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਬਹੁਤ ਸਾਰੇ ਭੌਤਿਕੀ ਨਤੀਜੇ ਹਨ। ਕੁੱਝ ਪਰਿਣਾਮ ਥਿਊਰੀ ਦੇ ਸਿਧਾਂਤਾਂ ਤੋਂ ਸਿੱਧਾ ਹੀ ਪਤਾ ਚਲਦੇ ਹਨ, ਜਦੋਂ ਕਿ ਬਾਕੀ ਦੇ ਪਰਿਣਾਮ ਸਿਰਫ ਆਈਨਸਟਾਈਨ ਦੇ ਸ਼ੁਰੂਆਤੀ ਪਬਲੀਕੇਸ਼ਨ ਨੂੰ ਸਮਝਦੇ ਹੋਇ ਕਈ ਸਾਲਾਂ ਦੀ ਖੋਜ ਦੇ ਕੋਰਸ ਦੌਰਾਨ ਹੀ ਸਪਸ਼ਟ ਹੋਏ ਹਨ।
ਗਰੈਵੀਟੇਸ਼ਨ ਟਾਈਮ ਡਿਲੇਸ਼ਨ ਅਤੇ ਫਰੀਕੁਐਂਸੀ ਸ਼ਿਫਟ
ਸੋਧੋਇਹ ਮੰਨਦੇ ਹੋਏ ਕਿ ਸਮਾਨਤਾ ਸਿਧਾਂਤ (ਇਕੁਈਵੇਲੇਂਸ ਪ੍ਰਿੰਸੀਪਲ) ਲਾਗੂ ਰਹਿੰਦਾ ਹੈ, ਗਰੈਵਿਟੀ ਵਕਤ ਦੇ ਲਾਂਘੇ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੀ ਹੈ। ਕਿਸੇ ਗਰੈਵਿਟੀ ਖੂਹ ਵਿੱਚ ਭੇਜੀ ਗਈ ਲਾਈਟ ਬਲਿਊਸ਼ਿਫਟ ਹੋ ਜਾਂਦੀ ਹੈ। ਜਦੋਂ ਕਿ ਉਲਟੀ ਦਿਸ਼ਾ ਵਿੱਚ ਭੇਜੀ ਗਈ ਲਾਈਟ (ਯਾਨਿ ਕਿ, ਗਰੈਵਿਟੀ ਖੂਹ ਤੋਂ ਬਾਹਰ ਛੱਲ ਮਾਰਦੀ ਹੋਈ) ਰੈਡਸ਼ਿਫਟਡ ਹੋ ਜਾਂਦੀ ਹੈ ; ਇਕੱਠਾ ਕਰਦੇ ਹੋਏ, ਇਹਨਾਂ ਦੋਵੇਂ ਪ੍ਰਭਾਵਾਂ ਨੂੰ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫਰੀਕੁਐਂਸੀ ਸ਼ਿਫਟ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਹੋਰ ਆਮ ਕਰ ਕੇ, ਭਾਰੀ ਵਸਤੂਆਂ ਨੇੜੇ ਦੀਆਂ ਕ੍ਰਿਆਵਾਂ ਦੂਰ ਹੋ ਰਹੀਆਂ ਕ੍ਰਿਆਵਾਂ ਦੇ ਤੁਲਨਾਤਮਿਕ ਜਿਆਦਾ ਧੀਮੀਆਂ ਹੁੰਦੀਆਂ ਹਨ ; ਇਸ ਪ੍ਰਭਾਵ ਨੂੰ ਗਰੈਵੀਟੇਸ਼ਨਲ ਟਾਈਮ ਡਿਲੇਸ਼ਨ ਕਹਿੰਦੇ ਹਨ।
ਗਰੈਵੀਟੇਸ਼ਨਲ ਰੈਡਸ਼ਿਫਟ ਨੂੰ ਪ੍ਰਯੋਗਸ਼ਾਲਾ (ਲੈਬਰੌਟਰੀ) ਵਿੱਚ ਨਾਪਿਆ ਗਿਆ ਹੈ ਅਤੇ ਅਸਟ੍ਰੋਨੋਮੀਕਲ ਨਿਰੀਖਣ ਵਰਤਦੇ ਹੋਏ ਨਾਪਿਆ ਗਿਆ ਹੈ। ਧਰਤੀ ਦੀ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਵਿੱਚ ਗਰੈਵੀਟੇਸ਼ਨਲ ਟਾਈਮ ਡਿਲੇਸ਼ਨ ਬਹੁਤ ਵਾਰ ਅਟੌਮਿਕ ਕਲੌਕ ਵਰਤਦੇ ਹੋਏ ਨਾਪੀ ਗਈ ਹੈ, ਜਦੋਂਕਿ ਚੱਲ ਰਹੀ ਪ੍ਰਮਾਣਿਕਤਾ ਨੂੰ ਗਲੋਬਲ ਪੋਜੀਸ਼ਨਿੰਗ ਸਿਸਟਮ (GPS) ਦੇ ਓਪਰੇਸ਼ਨ ਦੇ ਪ੍ਰਭਾਵ ਦੇ ਰੂਪ ਵਿੱਵ ਮੁੱਹਈਆ ਕਰਾਇਆ ਗਿਆ ਹੈ। ਤਾਕਤਵਰ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡਾਂ ਅੰਦਰ ਪਰਖਾਂ ਨੂੰ ਬਾਇਨਰੀ ਪਲਸਰਜ਼ ਦੇ ਨਿਰੀਖਣਾਂ ਰਾਹੀਂ ਮੁੱਹਈਆ ਕਰਾਇਆ ਗਿਆ ਹੈ। ਸਾਰੇ ਨਤੀਜੇ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਨਾਲ ਸਹਿਮਤ ਰਹੇ ਹਨ। ਫੇਰ ਵੀ, ਤਾਜ਼ਾ ਲੈਵਲ ਦੀ ਸ਼ੁੱਧਤਾ ਉੱਤੇ, ਇਹ ਨਿਰੀਖਣ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਅਤੇ ਹੋਰ ਉਹਨਾਂ ਥਿਊਰੀਆਂ ਦਰਮਿਆਨ ਫਰਕ ਨਹੀਂ ਕਰ ਸਕਦੇ ਜਿਹਨਾਂ ਵਿੱਚ ਇਕੁਈਵੇਲੈਂਸ ਪ੍ਰਿੰਸੀਪਲ ਲਾਗੂ ਰਹਿੰਦਾ ਹੈ।
ਲਾਈਟ ਡਿਫਲੈਕਸ਼ਨ (ਝੁਕਾਓ) ਅਤੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਟਾਈਮ ਦੇਰੀ
ਸੋਧੋਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਅਨੁਮਾਨ ਲਗਾਉਂਦੀ ਹੈ ਕਿ ਪ੍ਰਕਾਸ਼ ਦਾ ਰਸਤਾ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਵਿੱਚ ਝੁਕ ਜਾਂਦਾ ਹੈ ; ਕਿਸੇ ਭਾਰੀ ਵਸਤੂ ਕੋਲੋਂ ਗੁਜ਼ਰਦੀ ਲਾਈਟ ਓਸ ਵਸਤੂ ਵੱਲ ਝੁਕ ਜਾਂਦੀ ਹੈ। ਇਹ ਪ੍ਰਭਾਵ ਸੂਰਜ ਕੋਲੋਂ ਗੁਜ਼ਰਦੇ ਦੂਰ ਸਥਿਤ ਤਾਰਿਆਂ ਜਾਂ ਕੁਆਸਰਜ਼ ਦੇ ਪ੍ਰਕਾਸ਼ ਦੇ ਨਿਰੀਖਣਾਂ ਰਾਹੀਂ ਸਾਬਤ ਕੀਤਾ ਗਿਆ ਹੈ।
ਇਹ ਅਤੇ ਇਸਦੇ ਨਾਲ ਸਬੰਧਿਤ ਅਨੁਮਾਨ ਇਸ ਤੱਥ ਤੋਂ ਪੈਦਾ ਹੁੰਦੇ ਹਨ ਕਿ ਪ੍ਰਕਾਸ਼ ਜਿਸ ਚੀਜ਼ ਨੂੰ ਫੋਲੌ ਕਰਦਾ (ਰਸਤਾ ਅਪਣਾਉਂਦਾ) ਹੈ, ਉਸਨੂੰ ਲਾਈਟ-ਲਾਈਕ ਜਾਂ ਨੱਲ-ਜੀਓਡੈਸਿਕ ਕਹਿੰਦੇ ਹਨ- ਜੋ ਕਲਾਸੀਕਲ ਭੌਤਿਕ ਵਿਗਿਆਨ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੇ ਸਿੱਧੀਆਂ ਰੇਖਾਵਾਂ ਵਿੱਚ ਯਾਤਰਾ ਕਰਨ ਦਾ ਸਰਵਸਧਾਰੀਕਰਨ ਹੈ। ਅਜਿਹੇ ਜੀਓਡੈਸਿਕ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ ਲਾਈਟਸਪੀਡ ਦੇ ਇਨਵੇਰੀਅੰਸ (ਸਥਿਰਤਾ) ਦੀ ਜਨਰਲਾਇਜ਼ੇਸ਼ਨ ਹੈ। ਜਿਵੇਂ ਜਿਵੇਂ ਕੋਈ ਢੁਕਵੇਂ ਮਾਡਲ ਸਪੇਸਟਾਈਮਾਂ ਦੀ ਜਾਂਚ ਕਰਦਾ ਜਾਂਦਾ ਹੈ (ਚਾਹੇ ਬਾਹਰੀ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਸਲਿਊਸ਼ਨ ਹੋਵੇ ਜਾਂ, ਕਿਸੇ ਸਿੰਗਲ ਮਾਸ ਤੋਂ ਜਿਆਦਾ, ਪੋਸਟ-ਨਿਊਟੋਨੀਅਨ ਐਕਸਪੈਨਸ਼ਨ/ਫੈਲਾਓ ਹੋਵੇ), ਪ੍ਰਕਾਸ਼ ਸੰਚਾਰ ਉੱਤੇ ਗਰੈਵਿਟੀ ਦੇ ਕਈ ਪ੍ਰਭਾਵ ਪੈਦਾ ਹੁੰਦੇ ਜਾਂਦੇ ਹਨ। ਭਾਵੇਂ ਪ੍ਰਕਾਸ਼ ਦਾ ਝੁਕਣਾ ਪ੍ਰਕਾਸ਼ ਤੱਕ ਫਰੀ ਫਾਲ ਦੀ ਬ੍ਰਹਿਮੰਡੀ ਵਿਸ਼ੇਸ਼ਤਾ ਦਾ ਵਿਸਥਾਰ ਕਰਕੇ ਵੀ ਪਤਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਅਜਿਹੀਆਂ ਕੈਲਕੁਲੇਸ਼ਨਾਂ ਤੋਂ ਨਿਕਲਿਆ ਝੁਕਾਓ ਵਾਲਾ ਐਂਗਲ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਰਾਹੀਂ ਦਿੱਤੇ ਗਏ ਮੁੱਲ ਤੋਂ ਸਿਰਫ ਅੱਧਾ ਹੀ ਹੁੰਦਾ ਹੈ।
ਗਰੈਵਿਟੇਸ਼ਨਲ ਟਾਈਮ ਡਿਲੇ (ਜਾਂ ਸ਼ਾਪੀਰੋ ਡਿਲੇ) ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੇ ਝੁਕਾਓ ਨਾਲ ਨਜ਼ਦੀਕੀ ਤੌਰ ਤੇ ਸੰਬਧਿਤ, ਇਹ ਘਟਨਾਕ੍ਰਮ ਹੁੰਦਾ ਹੈ ਕਿ ਕਿਸੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਵਿੱਚ ਨੂੰ ਗੁਜ਼ਰਦੇ ਹੋਏ ਪ੍ਰਕਾਸ਼ ਦੇ ਸਿਗਨਲ ਓਸ ਫੀਲਡ ਦੀ ਗੈਰਹਾਜ਼ਰੀ ਵਿੱਚ ਗੁਜ਼ਰਨ ਵਾਲੇ ਵਕਤ ਨਾਲੋਂ ਜਿਆਦਾ ਵਕਤ ਲੈਂਦੇ ਹਨ। ਇਸ ਅਨੁਾਮਾਨ ਦੀ ਜਾਂਚ ਬਹੁਤ ਵਾਰ ਸਫਲ ਰਹੀ ਹੈ। ਪੈਰਾਮੀਟ੍ਰਾਇਜ਼ਡ ਪੋਸਟ-ਨਿਊਟੋਨੀਅਨ ਫੌਰਮੂਲਾਇਜ਼ਮ (PPN) ਵਿੱਚ ਲਾਈਟ ਦੇ ਝੁਕਾਓ ਅਤੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਟਾਈਮ ਡਿਲੇ ਦੋਹਾਂ ਦੇ ਨਾਪ ਇੱਕ γ ਕਿਹਾ ਜਾਣਾ ਵਾਲਾ ਮਾਪਦੰਡ (ਪੈਰਾਮੀਟਰ) ਨਿਰਧਾਰਿਤ ਕਰਦੇ ਹਨ, ਜੋ ਸਪੇਸ ਦੀ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਉੱਤੇ ਗਰੈਵਿਟੀ ਦੇ ਪ੍ਰਭਾਵ ਨੂੰ ਐੱਨਕੋਡ ਕਰਦਾ (ਨਕਾਸ਼ਦਾ) ਹੈ।
ਗਰੈਵੀਟੇਸ਼ਨਲ਼ ਤਰੰਗਾਂ
ਸੋਧੋ
ਵੀਕ-ਫੀਲਡ ਗਰੈਵਿਟੀ ਅਤੇ ਇਲੈਕਟ੍ਰੋਮੈਗਨਟਿਜ਼ਮ ਦਰਮਿਆਨ ਕਈ ਸਮਾਨਤਾਵਾਂ ਵਿੱਚੋਂ ਇੱਕ ਸਮਾਨਤਾ ਇਹ ਹੈ ਕਿ, ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਤਰੰਗਾਂ (ਵੇਵਜ਼) ਦੇ ਸਮਾਨ, ਗਰੈਵੀਟੇਸ਼ਨਲ ਵੇਵਜ਼ ਵੀ ਹੁੰਦੀਆਂ ਹਨ : ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਉੱਤੇ ਸੰਚਾਰਿਤ ਹੋਣ ਵਾਲੇ ਸਪੇਸਟਾਈਮ ਦੇ ਮੀਟ੍ਰਿਕ ਵਿੱਚ ਉਤਾਰ-ਚੜਾਓ। ਅਜਿਹੇ ਕਿਸੇ ਵੇਵ ਦੀ ਸਰਲਤਮ ਕਿਸਮ ਨੂੰ, ਸੁਤੰਤਰਤਾ ਨਾਲ ਤੈਰ ਰਹੇ ਪਾਰਟੀਕਲਾਂ ਦੇ ਕਿਸੇ ਛੱਲੇ (ਰਿੰਗ) ਉੱਤੇ ਇਸਦੇ ਐਕਸ਼ਨ (ਕ੍ਰਿਆ ਕਾਰਜ) ਦੁਆਰਾ ਦੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਪਾਠਕ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਸੰਚਾਰਿਤ ਹੋ ਰਹੀ, ਅਜਿਹੇ ਕਿਸੇ ਰਿੰਗ ਵਿੱਚ ਦੀ ਇੱਕ ਸਾਈਨ ਵੇਵ, ਇੱਕ ਵਿਸ਼ੇਸ਼, ਸੰਗੀਤਮਈ ਅੰਦਾਜ ਵਿੱਚ ਛੱਲੇ ਦਾ ਰੂਪ ਵਿਗਾੜਦੀ ਹੈ। ਕਿਉਂਕਿ ਆਈਨਸਟਾਈਨ ਦੀਆਂ ਇਕੁਏਸ਼ਨਾਂ ਨੌਨ-ਲੀਨੀਅਰ (ਗੈਰ-ਰੇਖਿਕ) ਹਨ, ਮਨਮਰਜੀ ਦੀਆਂ ਸ਼ਕਤੀਸ਼ਾਲੀ ਗਰੈਵੀਟੇਸ਼ਨਲ ਵੇਵਜ਼ ਲੀਨੀਅਰ ਸੁਪਰਪੁਜੀਸ਼ਨ ਦੀ ਪਾਲਣਾ ਨਹੀਂ ਕਰਦੀਆਂ, ਜਿਸ ਕਾਰਨ ਉਹਨਾਂ ਦਾ ਵਿਵਰਣ ਮੁਸ਼ਕਲ ਹੋ ਜਾਂਦਾ ਹੈ। ਫੇਰ ਵੀ, ਕਮਜੋਰ ਫੀਲਡਾਂ ਲਈ, ਇੱਕ ਲੀਨੀਅਰ ਸੰਖੇਪਤਾ ਬਣਾਈ ਜਾ ਸਕਦੀ ਹੈ। ਅਜਿਹੀਆਂ ਲੀਨੀਅਰ ਬਣਾਈਆ ਗਈਆਂ ਤਰੰਗਾਂ ਉਹਨਾਂ ਬਹੁਤਾਤ ਵਾਲੀਆਂ ਕਮਜੋਰ ਤਰੰਗਾਂ ਦਾ ਵਿਵਰਣ ਦੇਣ ਲਈ ਕਾਫੀ ਮਾਤਰਾ ਵਿੱਚ ਸ਼ੁੱਧਤਾ ਨਾਲ ਵਿਵਰਣ ਦਿੰਦੀਆਂ ਹਨ ਜਿਹਨਾਂ ਤਰੰਗਾਂ ਦੀ ਧਰਤੀ ਤੋਂ ਦੂਰਸਥਿਤ ਬ੍ਰਹਿਮੰਡੀ ਘਟਨਾਵਾਂ ਤੋਂ ਧਰਤੀ ਉੱਤੇ ਪਹੁੰਚਣ ਦੀ ਉਮੀਦ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਜੋ ਆਮ ਤੌਰ ਤੇ ਸਾਪੇਖਿਕ ਦੂਰੀਆਂ ਨੂੰ 10-21 ਜਾਂ ਇਸਤੋਂ ਘੱਟ ਦੀ ਸੂਖਮ ਮਾਤਰਾ ਵਿੱਚ ਵਧਾਉਣ ਅਤੇ ਘਟਾਉਣ ਲਈ ਜਿਮੇਵਾਰ ਹਨ। ਆਂਕੜਿਆਂ ਦੇ ਵਿਸ਼ਲੇਸ਼ਣ ਵਾਲੇ ਤਰੀਕੇ ਰੋਜ਼ਾਨਾ ਇਸ ਤੱਥ ਦੀ ਵਰਤੋ ਕਰਦੇ ਹਨ ਕਿ ਇਹ ਰੇਖਾਕ੍ਰਿਤ (ਲੀਨੀਅਰਾਈਜ਼ਡ) ਤਰੰਗਾਂ ਫੋਰੀਅਰ ਡਿਕੰਪੋਜ਼ਡ ਕੀਤੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ।
ਕੁੱਝ ਇੰਨਬਿੰਨ ਸਲਿਉਸ਼ਨ ਬਗੈਰ ਕਿਸੇ ਸੰਖੇਪਤਾ ਦੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਵੇਵਜ਼ ਦਾ ਵਿਵਰਣ ਦਿੰਦੇ ਹਨ, ਜਿਵੇਂ, ਖਾਲੀ ਸਪੇਸ ਵਿੱਚ ਨੂੰ ਯਾਤਰਾ ਕਰ ਰਹੀ ਇੱਕ ਵੇਵ ਟਰੇਨ (ਤਰੰਗ ਰੇਲਗੱਡੀ) ਜਾਂ ਗੋਉਡੀ ਯੂਨੀਵਰਸਿਜ਼, ਗਰੈਵੀਟੇਸ਼ਨਲ ਤਰੰਗਾਂ ਨਾਲ ਭਰੇ ਇੱਕ ਫੈਲ ਰਹੇ ਵਿਸ਼ਵ ਦੀ ਕਿਸਮ ਹੈ। ਪਰ ਖਗੋਲਭੌਤਿਕੀ (ਅਸਟ੍ਰੋਫਿਜ਼ੀਕਲੀ) ਤਰੀਕੇ ਨਾਲ ਮਿਲਦੀਆਂ ਪ੍ਰਸਥਿਤੀਆਂ ਵਿੱਚ ਪੈਦਾ ਕੀਤੀਆਂ ਗਰੈਵੀਟੇਸ਼ਨਲ ਵੇਵਜ਼ ਲਈ, ਜਿਵੇਂ ਦੋ ਬਲੈਕ ਹੋਲਾਂ ਦਾ ਇੱਕ ਹੋ ਜਾਣਾ, ਨਿਉਮੈਰੀਕਲ ਮੈਥੋਡਜ਼ (ਸੰਖਿਅਕ ਤਰੀਕੇ) ਫਿਲਹਾਲ ਢੁਕਵੇਂ ਮਾਡਲ ਰਚਣ ਦਾ ਇਕਲੌਤਾ ਤਰੀਕਾ ਹਨ।
ਔਰਬਿਟਲ ਪ੍ਰਭਾਵ ਅਤੇ ਦਿਸ਼ਾ ਦੀ ਰਿਲੇਟੀਵਿਟੀ
ਸੋਧੋਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਤੋਂ ਚੱਕਰ ਲਗਾ ਰਹੀਆਂ ਵਸਤੂਆਂ ਦੇ ਸਬੰਧ ਦੇ ਅਨੁਮਾਨਾਂ ਵਿੱਚ ਕਈ ਪਾਸੇ ਨੂੰ ਅੰਤਰ ਰੱਖਦੀ ਹੈ। ਇਹ ਗ੍ਰਹਿਾਂ ਦੇ ਰਸਤਿਆਂ ਦਾ ਇੱਕ ਪੂਰਾ ਚੱਕਰ (ਪਰੀਸੈਸ਼ਨ) ਪਰਡਿਕਟ ਕਰਦੀ ਹੈ, ਅਤੇ ਨਾਲ ਹੀ ਗਰੈਵੀਟੇਸ਼ਨਲ ਤਰੰਗਾਂ ਦੇ ਵਿਕੀਰਣ ਰਾਹੀਂ ਪੈਦਾ ਹੋਇਆ ਔਰਬਿਟਲ ਰਿਸਾਵ (ਡਿਕੇਅ) ਪਰਿਡਿਕਟ ਕਰਦੀ ਹੈ (ਅਨੁਮਾਨ ਲਗਾਉਂਦੀ ਹੈ) ਅਤੇ ਦਿਸ਼ਾ ਦੀ ਰਿਲੇਟੀਵਿਟੀ ਨਾਲ ਸਬੰਧਿਤ ਪ੍ਰਭਾਵਾਂ ਦਾ ਅਨੁਮਾਨ ਵੀ ਲਗਾਉਂਦੀ ਹੈ।
ਚੱਕਰਪਥਾਂ ਦੇ ਸਿਰਿਆਂ (ਐਪਸਾਈਡਜ਼) ਦਾ ਅਗ੍ਰਗਮਨ (ਪਰੀਸੈੱਸ਼ਨ)
ਸੋਧੋਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ, ਕਿਸੇ ਚੱਕਰਪਥ (ਔਰਬਿਟ) ਦੇ ਅੰਤਿਮ ਸਿਰੇ (ਸਿਸਟਮ ਦੇ ਮਾਸ ਦੇ ਕੇਂਦਰ ਤੋਂ ਨੇੜੇ ਦੀ ਪਹੁੰਚ ਵਾਲਾ ਕਿਸੇ ਵਸਤੂ ਦਾ ਬਿੰਦੂ) ਪਰੀਸੈੱਸ ਹੋ ਜਾਵੇਗਾ- ਔਰਬਿਟ ਅੰਡਾਕਾਰ ਨਹੀਂ ਹੁੰਦਾ, ਪਰ ਅੰਡਾਕਾਰ (ਐਲਿਪਸ) ਦੇ ਬਰਾਬਰ ਦਿਸਣ ਵਾਲਾ ਹੁੰਦਾ ਹੈ ਜੋ ਅਪਣੇ ਫੋਕਸ ਦੁਆਲੇ ਘੁੰਮਦਾ ਹੈ, ਨਤੀਜੇ ਵਜੋਂ ਇੱਕ ਰੋਜ਼-ਕਰਵ ਪੈਦਾ ਕਰਦਾ ਹੈ- ਜਿਵੇਂ ਤਸਵੀਰ ਵਿੱਚ ਦਿਖਾਇਆ ਗਿਆ ਹੈ। ਆਈਨਸਟਾਈਨ ਨੇ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਰਿਜ਼ਲਟ ਨਿਉਟੋਨੀਅਨ ਲਿਮਿਟ ਪ੍ਰਸਤੁਤ ਕਰਦੇ ਇੱਕ ਸੰਖੇਪ ਮੀਟ੍ਰਿਕ ਦੀ ਵਰਤੋਂ ਨਾਲ ਕੱਢਿਆ ਅਤੇ ਚੱਕਰ ਲਗਾ ਰਹੀ ਚੀਜ਼ ਨੂੰ ਇੱਕ ਟੈਸਟ ਪਾਰਟੀਕਲ ਦੀ ਤਰਾਂ ਲਿਆ। ਉਸਦੇ ਲਈ, ਇਹ ਤੱਥ ਬਹੁਤ ਮਹੱਤਵ ਰੱਖਦਾ ਸੀ। ਕਿ ਉਸਨੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਇਕੁਏਸ਼ਨਾਂ ਦਾ ਘੱਟੋ ਘੱਟ ਸਹੀ ਰੂਪ ਤਾਂ ਪਛਾਣ ਲਿਆ ਹੈ : ਤੱਥ ਇਹ ਸੀ ਕਿ ਉਸਦੀ ਥਿਊਰੀ ਨੇ, 1859 ਵਿੱਚ ਅਰਬੇਨ ਲੀ ਵੈੱਰੀਅਰ ਦੁਆਰਾ ਪਹਿਲਾਂ ਤੋਂ ਖੋਜੇ ਗਏ ਗ੍ਰਹਿ ਮਰਕਰੀ (ਬੁੱਧ) ਦੀ ਸੂਰਜ ਦੇ ਨੇੜੇ ਨਿਯਮ ਵਿਰੁੱਧ ਸ਼ਿਫਟ ਦੀ ਸਿੱਧੀ ਵਿਆਖਿਆ ਦਿੱਤੀ ਸੀ।
ਇਹ ਪ੍ਰਭਾਵ ਇੰਨਬਿੰਨ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਮੀਟ੍ਰਿਕ (ਕਿਸੇ ਸਫੈਰੀਕਲ ਮਾਸ ਦੁਆਲੇ ਸਪੇਸਟਾਈਮ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ) ਨੂੰ ਵਰਤ ਕੇ ਵੀ ਕੱਢਿਆ ਜਾ ਸਕਦਾ ਹੈ ਜਾਂ ਹੋਰ ਜਿਆਦਾ ਆਮ ਪੋਸਟ-ਨਿਊਟੋਨੀਅਨ ਫਾਰਮੂਲਿਜ਼ਮ ਦੀ ਵਰਤੋ ਨਾਲ ਵੀ ਕੱਢਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਸਪੇਸ ਦੀ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਉੱਤੇ ਗਰੈਵਿਟੀ ਦੇ ਪ੍ਰਭਾਵ ਕਾਰਣ ਹੁੰਦਾ ਹੈ ਅਤੇ ਵਸਤੂ ਦੀ ਗਰੈਵਿਟੀ (ਆਈਨਸਟਾਈਨ ਦੀਆਂ ਸਮੀਕਰਨਾਂ ਦੀ ਗੈਰ-ਰੇਖਿਕਤਾ ਵਿੱਚ ਪਿਰੋ ਕੇ ਲਿਖਿਆ ਗਿਆ ਹੈ) ਨੂੰ ਇੱਕ ਸਵੈ-ਊਰਜਾ ਦੇ ਯੋਗਦਾਨ ਕਾਰਨ ਹੁੰਦਾ ਹੈ। ਸਾਪੇਖਿਕ ਪਰੀਸੈੱਸ਼ਨ ਸਾਰੇ ਉਹਨਾਂ ਗ੍ਰਹਿਾਂ ਲਈ ਦੇਖਿਆ ਗਿਆ ਹੈ ਜੋ ਸ਼ੁੱਧ ਪਰੀਸੈੱਸ਼ਨ ਨਾਪਾਂ ਦੀ ਆਗਿਆ ਦਿੱਦੇ ਹਨ (ਮਰਕਰੀ, ਵੀਨਸ, ਅਤੇ ਧਰਤੀ), ਅਤੇ ਬਾਇਨਰੀ ਸੋਲਰ ਸਿਸਟਮਾਂ ਵਿੱਚ ਵੀ ਦੇਖਿਆ ਗਿਆ ਹੈ, ਜਿੱਥੇ ਇਹ ਮਾਤਰਾ ਦੇ ਪੰਜ ਕ੍ਰਮਾੰ ਵਿੱਚ ਵੱਡਾ ਹੁੰਦਾ ਹੈ।
Orbital decay (ਚੱਕਰਪਥ ਰਿਸਾਓ)
ਸੋਧੋਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਮੁਤਾਬਿਕ, ਇੱਕ ਬਾਇਨਰੀ ਸਿਸਟਮ ਗਰੈਵੀਟੇਸ਼ਨਲ ਤਰੰਗਾਂ ਪੈਦਾ ਕਰੇਗਾ, ਇਸ ਕਾਰਣ ਐਨਰਜੀ ਖੋ ਰਿਹਾ ਹੋਵੇਗਾ। ਇਸ ਰਿਸਾਓ ਕਾਰਣ, ਦੋ ਘੁੰਮ ਰਹੀਆਂ ਚੀਜ਼ਾਂ ਦਰਮਿਆਨ ਦੂਰੀ (ਡੋਸਟੈਂਸ) ਘਟ ਜਾਂਦਾ ਹੈ, ਅਤੇ ਇਸ ਕਾਰਣ ਉਹਨਾਂ ਦਾ ਚੱਕਰ ਲਗਾਉਣ ਦਾ ਪੀਰੀਅਡ (ਅਰਸਾ) ਵੀ ਘਟ ਜਾਂਦਾ ਹੈ। ਸੋਲਰ ਸਿਸਟਮ ਅੰਦਰ, ਜਾਂ ਸਧਾਰਨ ਦੋਹਰੇ ਤਾਰਿਆਂ ਲਈ, ਇਹ ਪ੍ਰਭਾਵ ਇੰਨਾ ਸੂਖਮ ਹੈ ਕਿ ਦੇਖਿਆ ਨਹੀਂ ਜਾ ਸਕਦਾ। ਇਹ ਕਿਸੇ ਨੇੜੇ ਦੇ ਬਾਇਨਰੀ ਪਲਸਰ ਦੇ ਮਾਮਲੇ ਵਿੱਚ ਨਹੀਂ ਹੁੰਦਾ, ਜੋ ਦਿ ਘੁੰਮ ਰਹੇ ਨਿਊਟ੍ਰੌਨ ਸਟਾਰਾਂ ਦਾ ਇੱਕ ਸਿਸਟਮ ਹੈ, ਜਿਹਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਪਲਸਾਰ ਹੈ। ਪਲਸਾਰ ਤੋਂ, ਧਰਤੀ ਉੱਤੇ ਦਰਸ਼ਕ ਰੇਡੀਓ ਪਲਸਾਂ ਦਾ ਇੱਕ ਨਿਯਮਿਤ ਸੀਰੀਜ਼ ਰਿਸੀਵ ਕਰਦੇ ਹਨ ਜੋ ਕਿਸੇ ਉੱਚ ਸ਼ੁੱਧਤਾ ਵਾਲਾ ਕਲੌਕ ਬਣਕੇ ਸੇਵਾ ਕਰ ਸਕਦਾ ਹੈ, ਜੋ ਔਰਬਿਟਲ ਪੀਰੀਅਡ ਦੇ ਸ਼ੁੱਧ ਨਾਪਾਂ ਨੂੰ ਸੰਭਵ ਕਰਦਾ ਹੈ। ਕਿਉਂਕਿ ਨਿਊਟ੍ਰੌਨ ਸਟਾਰ ਬਹੁਤ ਠੋਸ ਸੰਘਣੇ ਹੁੰਦੇ ਹਨ, ਗਰੈਵੀਟੇਸ਼ਨਲ ਰੇਡੀਏਸ਼ਨ ਦੇ ਰੂਪ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ ਮਾਤਰਾ ਵਿੱਚ ਐਨਰਜੀ ਬਾਹਰ ਨਿਕਲਦੀ ਰਹਿੰਦੀ ਹੈ।
1974 ਵਿੱਚ ਬਾਇਨਰੀ ਪਲਸਾਰ PSR1913+16 ਵਰਤਦੇ ਹੋਏ ਹੁਲਸ ਅਤੇ ਟੇਲਰ ਦੁਆਰਾ ਗਰੈਵੀਟੇਸ਼ਨਲ ਤਰੰਗਾਂ ਦੇ ਪੈਦਾ ਹੋਣ ਕਾਰਨ ਔਰਬਿਟਲ ਪੀਰੀਅਡ ਵਿੱਚ ਕਮੀ ਦੀ ਪਹਿਲੀ ਜਾਂਚ ਕੀਤੀ ਗਈ ਸੀ। ਇਹ ਗਰੈਵੀਟੇਸ਼ਨਲ ਤਰੰਗਾਂ ਦੀ ਪਹਿਲੀ ਡਿਟੈਕਸ਼ਨ ਸੀ, ਜਿਸ ਕਾਰਣ ਅਲਬੇਟ ਨੂੰ ਅਸਿੱਧੇ ਤਰੀਕੇ ਨਾਲ 1993 ਵਿੱਚ ਭੌਤਿਕ ਵਿਗਿਆਨ ਲਈ ਨੋਬਲ ਪੁਰਸਕਾਰ ਨਾਲ ਨਿਵਾਜਿਆ ਗਿਆ। ਉਸਤੋਂ ਬਾਦ, ਕਈ ਹੋਰ ਬਾਇਨਰੀ ਪਲਸਾਰ ਖੋਜੇ ਜਾ ਚੁੱਕੇ ਹਨ, ਖਾਸ ਕਰ ਕੇ ਡਬਲ ਪਲਸਾਰ PSR J0737-3039, ਜਿਸ ਵਿੱਚ ਦੋਵੇਂ ਸਟਾਰ ਪਲਸਾਰ ਹੁੰਦੇ ਹਨ।
ਜੀਓਡੈਸਿਕ ਪਰੀਸੈੱਸ਼ਨ ਅਤੇ ਫਰੇਮ-ਡਰੈਗਿੰਗ
ਸੋਧੋਕਈ ਰੀਲੇਟੀਵਿਸਟਿਕ ਪ੍ਰਭਾਵ ਸਿੱਧੇ ਰੂਪ ਵਿੱਚ ਦਿਸ਼ਾ ਦੀ ਸਾਪੇਖਿਕਤਾ (ਰਿਲੇਟੀਵਿਟੀ) ਨਾਲ ਜੁੜੇ ਹਨ। ਇੱਕ ਪ੍ਰਭਾਵ ਜੀਓਡੈਸਿਕ ਪਰੀਸੈੱਸ਼ਨ ਹੈ : ਵਕਰਿਤ ਸਪੇਸਟਾਈਮ ਅੰਦਰ ਫਰੀ ਫਾਲ (ਸੁਤੰਤਰਤਾ ਨਾਲ ਡਿੱਗ ਰਹੀ) ਕਿਸੇ ਜਿਓਰੋਸਕੋਪ ਦੇ ਧੁਰੇ (ਐਕਸਿਸ) ਦੀ ਦਿਸ਼ਾ (ਡਾਇਰੈਕਸ਼ਨ) ਤੁਲਨਾ ਕਰਨ ਤੇ ਬਦਲ ਜਾਂਦੀ ਹੈ, ਜਿਵੇਂ ਦੂਰ ਸਥਿਤ ਤਾਰਿਆਂ ਤੋਂ ਰਿਸੀਵ ਕੀਤੇ ਪ੍ਰਕਾਸ਼ ਦੀ ਦਿਸ਼ਾ ਨਾਲ ਤੁਲਨਾ ਕਰਨ ਤੇ- ਭਾਵੇਂ ਅਜਿਹੀ ਜਿਓਰੋਸਕੋਪ ਦਿਸ਼ਾ ਨੂੰ ਸਾਂਭੀ ਰੱਖਣ ਦਾ ਹਰ ਸੰਭਵ ਯਤਨ ਕਰਦੀ ਹੈ (ਸਮਾਂਤਰ ਢੋਆ-ਢੁਆਈ ਪੜੋ)। ਚੰਦਰਮਾ-ਧਰਤੀ ਦੇ ਸਿਸਟਮ ਲਈ, ਇਹ ਪ੍ਰਭਾਵ ਲੁਨਰ ਲੇਜ਼ਰ ਰੈਂਗਿੰਗ ਦੀ ਮੱਦਦ ਨਾਲ ਨਾਪਿਆ ਗਿਆ ਹੈ। ਤਾਜ਼ਾ ਸਮਿਆਂ ਵਿੱਚ, ਇਹ ਸੈਟੈਲਾਈਟ Gravity Probe B (ਗਰੈਵਿਟੀ ਭਾਲ B ) ਦੇ ਦੁਆਲੇ ਪੁੰਜਾਂ ਲਈ ਨਾਪਿਆ ਗਿਆ ਹੈ ਜੋ 0.3% ਦੀ ਸ਼ੁੱਧਤਾ ਤੋਂ ਜਿਆਦਾ ਨਾਲ ਨਾਪਿਆ ਗਿਆ ਹੈ।
ਕਿਸੇ ਘੁੰਮ ਰਹੇ ਮਾਸ ਦੇ ਨੇੜੇ, ਗ੍ਰੈਵਿਟੋਮੈਗਨੈਟਿਕ ਜਾਂ ਫਰੇਮ-ਡਰੈਗਿੰਗ ਪ੍ਰਭਾਵ ਹੁੰਦੇ ਹਨ। ਇੱਕ ਦੂਰ ਸਥਿਤ ਦਰਸ਼ਨ ਨਿਰਧਾਰਿਤ ਕਰੇਗਾ ਕਿ ਮਾਸ ਦੇ ਨੇੜੇ ਦੀਆਂ ਵਸਤੂਆਂ ਆਲੇ ਦੁਆਲੇ ਡਰੈਗ ਹੋ ਜਾਂਦੀਆਂ ਹਨ। ਇਹ ਘੁੰਮ ਰਹੀਆਂ ਬਲੈਕ ਹੋਲਾਂ ਦੇ ਮਾਮਲੇ ਵਿੱਚ ਬਹੁਤ ਜਿਆਦਾ ਹੁੰਦਾ ਹੈ, ਜਿੱਥੇ, ਕਿਸੇ ਜ਼ੋਨ, ਜਿਸ ਨੂੰ ਅਰਗੋਸਫੀਅਰ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਵਿੱਚ ਦਾਖਲ ਹੋ ਰਹੀਆਂ ਵਸਤੂਆਂ ਲਈ ਘੁੰਮਣਾ (ਰੋਟੇਸ਼ਨ) ਜਰੂਰੀ ਹੋ ਜਾਂਦਾ ਹੈ। ਅਜਿਹੇ ਪ੍ਰਭਾਵਾਂ ਨੂੰ ਫਰੀ ਫਾਲ ਅਧੀਨ ਡਿੱਗ ਰਹੀਆਂ ਜੀਓਰੋਸਕੋਪਾਂ ਦੀ ਦਿਸ਼ਾ (ਓਰੀਏਂਟੇਸ਼ਨ) ਉੱਤੇ ਉਹਨਾਂ ਦੇ ਪ੍ਰਭਾਵ ਰਾਹੀਂ ਫੇਰ ਤੋਂ ਪਰਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। LAGEOS ਸੈਟੈਲਾਈਟਾਂ ਦੀ ਵਰਤੋ ਨਾਲ ਕੁੱਝ ਨਾ ਕੁੱਝ ਵਿਵਾਦਾਗ੍ਰਸਤ ਪਰਖਾਂ ਕੀਤੀਆਂ ਗਈਆਂ ਹਨ, ਜੋ ਰੀਲੇਟੀਵਿਸਟਿਕ ਅਨੁਮਾਨ ਨੂੰ ਕਨਫਰਮ (ਸਾਬਤ) ਕਰਦੀਆਂ ਹਨ। ਮਾਰਸ ਗਲੋਬਲ ਸਰਵੇਅਰ (ਮੰਗਲ ਗਲੋਬਲ ਨਿਰੀਖਣ) ਮੰਗਲ ਗ੍ਰਹਿ ਦੁਆਲੇ ਭਾਲ ਨੂੰ ਵੀ ਵਰਤਿਆ ਗਿਆ ਹੈ।
ਅਸਟ੍ਰੋਫਿਜ਼ੀਕਲ ਐਪਲੀਕੇਸ਼ਨਜ਼ (ਖਗੋਲਭੌਤਿਕੀ ਉਪਯੋਗ)
ਸੋਧੋਗਰੈਵੀਟੇਸ਼ਨਲ ਲੈੱਨਜ਼ਿੰਗ
ਸੋਧੋਗਰੈਵਿਟੀ ਰਾਹੀਂ ਪ੍ਰਕਾਸ਼ ਦਾ ਝੁਕਣਾ ਖਗੋਲਭੌਤਿਕੀ ਘਟਨਾਵਾਂ ਦੀ ਨਵੀਂ ਸ਼੍ਰੇਣੀ ਲਈ ਜਿਮੇਵਾਰ ਹੈ। ਜੇਕਰ ਖਗੋਲਸ਼ਾਸਤਰੀ ਅਤੇ ਕਿਸੇ ਦੂਰ ਸਥਿਤ ਨਿਸ਼ਾਨੇ ਵਾਲੀ ਢੁਕਵੇਂ ਮਾਸ ਅਤੇ ਸਾਪੇਖਿਕ ਦੂਰੀ ਵਾਲੀ ਕਿਸੇ ਵਸਤੂ ਦਰਮਿਆਨ ਕੋਈ ਭਾਰੀ ਚੀਜ਼ ਸਥਿਤ ਹੋਵੇ, ਤਾਂ ਖਗੋਲਵਿਗਿਆਨੀ ਨਿਸ਼ਾਨੇ ਦੀਆਂ ਬਹੁਗਿਣਤੀ ਵਿੱਚ ਵਿਗੜਿਆਂ ਹੋਈਆਂ ਤਸਵੀਰਾਂ ਦੇਖੇਗਾ। ਅਜਿਹੇ ਪ੍ਰਭਾਵਾਂ ਨੂੰ ਗਰੈਵੀਟੇਸ਼ਨਲ ਲੈੱਨਜ਼ਿੰਗ/ਲੈਂਜਿੰਗ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਬਣਤਰ ਰਚਨਾ ਦੇ ਤਰੀਕੇ, ਸਕੇਲ (ਪੈਮਾਨਾ), ਅਤੇ ਮਾਸ (ਪੁੰਜ) ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ (ਵੰਡ ਵਿਸਥਾਰ) ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹੋਏ, ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਤਸਵੀਰਾਂ ਹੋ ਸਕਦੀਆਂ ਹਨ, ਆਈਨਸਟਾਈਨ ਰਿੰਗ ਦੇ ਨਾਮ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਇੱਕ ਚਮਕਦਾਰ ਛੱਲਾ ਹੋ ਸਕਦਾ ਹੈ, ਜਾਂ ਪਾਰਸ਼ਲ ਰਿੰਗਜ਼ (ਅੰਸ਼ਿਕ ਛੱਲੇ) ਜਿਹਨਾਂ ਨੂੰ ਆਰਕਾਂ ਕਹਿੰਦੇ ਹਾਂ, ਹੋ ਸਕਦੇ ਹਨ। ਸਭ ਤੋਂ ਪਹਿਲੀ ਉਦਾਹਰਨ 1979 ਵਿੱਚ ਖੋਜੀ ਗਈ ਸੀ; ਉਸਤੋਂ ਬਾਦ, 100 ਤੋਂ ਜਿਆਦਾ ਗਰੈਵੀਟੇਸ਼ਨਲ ਲੈੱਨਜ਼ਦੇਖੇ ਜਾ ਚੁੱਕੇ ਹਨ। ਭਾਵੇਂ ਮਲਟੀਪਲ ਤਸਵੀਰਾਂ ਇੱਕ ਦੂਜੇ ਦੇ ਇੰਨਾ ਨੇੜੇ ਹੁੰਦੀਆਂ ਹਨ ਕਿ ਦੇਖੀਆਂ ਵੀ ਨਹੀਂ ਜਾ ਸਕਦੀਆਂ, ਤਾਂ ਵੀ ਉਹਨਾਂ ਦਾ ਪ੍ਰਭਾਵ ਅਜੇ ਵੀ ਨਾਪਿਆ ਜਾ ਸਕਦਾ ਹੁੰਦਾ ਹੈ, ਉਦਾਹਰਨ ਵਜੋਂ, ਜਿਵੇਂ ਕਿਸੇ ਟਾਰਗੈੱਟ ਵਸਤੂ ਦੀ ਸਾਰੀ ਦੀ ਸਾਰੀ ਚਮਕ (ਬਰਾਈਟਨੈੱਸ) ; ਅਜਿਹੀਆਂ ਬਹੁਤ ਸਾਰੀਆਂ ਮਾਈਕ੍ਰੋਲੈੱਨਜ਼ਿੰਗ (ਸੂਖਮਲੈੱਨਜ਼ਿੰਗ) ਘਟਨਾਵਾਂ ਓਬਜ਼ਰਵ (ਦੇਖੀਆਂ) ਗਈਆਂ ਹਨ।
ਗਰੈਵੀਟੇਸ਼ਨਲ ਲੈੱਨਜ਼ਿੰਗ ਨੇ ਔਬਜ਼ਰਵੇਸ਼ਨਲ ਅਸਟ੍ਰੌਨਮੀ (ਦੇਖੀ ਜਾਣ ਵਾਲੀ ਖਗੋਲ ਵਿਗਿਆਨ) ਦੇ ਇੱਕ ਔਜ਼ਾਰ ਦੇ ਰੂਪ ਵਿੱਚ ਅਪਣੇ ਆਪ ਨੂੰ ਵਿਕਸਿਤ ਕਰ ਲਿਆ ਹੈ। ਇਸ ਨੂੰ ਡਾਰਕ ਮੈਟਰ (ਗੁਪਤ ਪਦਾਰਥ) ਦੀ ਵੰਡ ਵਿਸਥਾਰ ਅਤੇ ਮੌਜੂਦਗੀ ਨੂੰ ਪਛਾਣਨ (ਡਿਟੈਕਟ) ਕਰਨ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ, ਦੂਰ ਸਥਿਤ ਗਲੈਕਸੀਆਂ ਨੂੰ ਦੇਖਣ ਲਈ “ਕੁਦਰਤੀ ਟੈਲੀਸਕੋਪ” ਮੁਹੱਈਆ ਕਰਵਾਉਣ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ, ਅਤੇ ਹੱਬਲ ਕੌਂਸਟੈਂਟ (ਸਥਿਰਾਂਕ) ਦੇ ਆਤਮਨਿਰਭਰ ਅਨੁਮਾਨ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਵੀ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਲੈੱਨਜ਼ਿੰਗ ਆਂਕੜੇ(ਡੈਟੇ) ਦੀਆਂ ਸਟੈਟਿਸਟੀਕਲ ਉਤਪੱਤੀਆਂ (ਐਵੋਲੀਊਸ਼ਨਾਂ) ਗਲੈਕਸੀਆਂ ਦੀ ਬਣਤਰ ਉਤਪੱਤੀ ਵਿੱਚ ਇੱਕ ਕੀਮਤੀ ਗਹਿਰੀ ਸਮਝ ਦਿੰਦੀਆਂ ਹਨ।
ਗਰੈਵੀਟੇਸ਼ਨਲ ਵੇਵ ਅਸਟ੍ਰੋਨੋਮੀ (ਤਰੰਗ ਖਗੋਲਵਿਗਿਆਨ)
ਸੋਧੋਬਾਇਨਰੀ ਪਲਸਰਾਂ ਦੀਆਂ ਔਬਜ਼ਰਵੇਸ਼ਨਾਂ ਨੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਤਰੰਗਾਂ (ਜਾਂ ਔਰਬਿਟਲ ਰਿਸਾਓ/ਡਿਕੇਅ) ਦੀ ਹੋਂਦ ਲਈ ਸ਼ਕਤੀਸ਼ਾਲੀ ਅਸਿੱਧਾ ਸਬੂਤ ਦਿੱਦਾ ਹੈ। ਫੇਰ ਵੀ, ਵਿਸ਼ਵ (ਕੋਸਮੌਸ) ਦੀ ਗਹਿਰਾਈ ਤੋਂ ਸਾਡੇ ਤੱਕ ਪਹੁੰਚ ਰਹੀਆਂ ਗਰੈਵੀਟੇਸ਼ਨਲ ਤਰੰਗਾਂ ਅਜੇ ਤੱਕ ਸਿੱਧੀਆਂ ਨਹੀਂ ਡਿਟੈਕਟ ਕੀਤੀਆਂ ਗਈਆਂ। ਅਜਿਹੀਆਂ ਡਿਟੈਕਸ਼ਨਾਂ ਰਿਲੇਟੀਵਿਟੀ-ਸਬੰਧੀ ਖੋਜ ਦੇ ਤਾਜ਼ਾ ਮੰਤਵਾਂ ਵਿੱਚੋਂ ਸਭ ਤੋਂ ਵੱਡਾ ਮੰਤਵ ਹੈ। ਕਈ ਧਰਤੀ ਤੇ ਅਧਾਰਿਤ ਗਰੈਵੀਟੇਸ਼ਨਲ ਵੇਵ ਡਿਟੈਕਟਰ ਓਪਰੇਸ਼ਨ ਅਧੀਨ ਹਨ, ਜਿਹਨਾਂ ਵਿੱਚੋਂ ਸਭ ਤੋਂ ਜਿਆਦਾ ਨੋਟ ਕਰਨ ਵਾਲੇ ਹਨ ; ਇੰਟਰਫੈਰੋਮੀਟ੍ਰਿਕ ਡੈਟੈਕਟਰਜ਼ GEO 600, LIGO (ਦੋ ਡਿਟੈਕਟਰ), TAMA 300 ਅਤੇ VIRGO। ਕਈ ਪਲਸਰ ਟਾਈਮਿੰਗ ਐਰੇਜ਼ ਮਿਲੀਸੈਕੰਡ ਪਲਸਰਾਂ ਦੀ ਵਰਤੋ ਕਰਦੇ ਹੋਏ 10−9 to 10−6 Hertz ਤੱਕ ਦੀ ਫਰੀਕੁਐਂਸੀ ਦੀ ਰੇਂਜ ਵਾਲੀਆਂ ਗਰੈਵੀਟੇਸ਼ਨਲ ਤਰੰਗਾਂ ਨੂੰ ਡਿਟੈਕਟ ਕਰਦੇ ਹਨ, ਜੋ ਬਾਇਨਰੀ ਸੁਪਰਮੈੱਸਿਵ ਬਲੈਕ ਹੋਲਾਂ ਤੋਂ ਪੈਦਾ ਹੁੰਦੀਆਂ ਹਨ। ਯੂਨਰਪੀਅਰ ਸਪੇਸ ਤੇ ਅਧਾਰਿਤ ਡਿਟੈਕਟਰ eLISA / NGO ਤਾਜ਼ਾ ਸਮੇਂ ਵਿੱਚ ਵਿਕਾਸ ਅਧੀਨ ਹੈ, ਜੋ 2015 ਵਿੱਚ ਲਾਓਂਚ ਕਰਨ ਲਈ ਪਰੀਕਰਸਰ (ਅੱਗੇ ਜਾਣ ਵਾਲਾ/ਅਗ੍ਰਦੂਤ) ਮਿਸ਼ਨ LISA Pathfinder ਦੇ ਨਾਲ ਹੈ।
ਗਰੈਵੀਟੇਸ਼ਨਲ ਤਰੰਗਾਂ ਦੇ ਨਿਰੀਖਣ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਸਪੈਕਟਰਮ ਵਿੱਚ ਨਿਰੀਖਣਾਂ ਵਿੱਚ ਵਾਧਾ ਕਰਨ ਦਾ ਵਾਅਦਾ ਕਰਦੇ ਹਨ। ਇਹਨਾਂ ਤੋਂ ਬਲੈਕ ਹੋਲਾਂ ਬਾਰੇ ਅਤੇ ਹੋਰ ਸੰਘਣੀਆਂ ਚੀਜ਼ਾਂ ਜਿਵੇਂ ਨਿਊਟ੍ਰੌਨ ਸਟਾਰ ਅਤੇ ਵਾਈਟ ਡਵਾਰਫ ਬਾਰੇ, ਸੁਪਰਨੋਵਾ ਇੰਪਲੋਜ਼ੀਅਨਜ਼ (ਵਿਵਿਧਤਾਵਾਂ) ਦੀਆਂ ਕੁੱਝ ਕਿਸਮਾਂ ਬਾਰੇ, ਅਤੇ ਬਹੁਤ ਸ਼ੁਰੂਆਤ ਦੇ ਬ੍ਰਹਿਮੰਡ ਵਿੱਚ ਕ੍ਰਿਆਵਾਂ ਬਾਰੇ ਜਾਣਕਾਰੀ ਪੈਦਾ ਕਰਨ ਦੀ ਉਮੀਦ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਜਿਸ ਵਿੱਚ ਹਾਇਪੋਥੈਟੀਕਲ ਕੌਸਮਿਕ ਸਟਰਿੰਗ (ਕਾਲਪਨਿਕ ਬ੍ਰਹਿਮੰਡੀ ਸਟਰਿੰਗ) ਦੀਆਂ ਕੁੱਝ ਕਿਸਮਾਂ ਦੇ ਸਿਗਨੇਚਰ ਵੀ ਸ਼ਾਮਿਲ ਹਨ।
ਬਲੈਕ ਹੋਲਾਂ ਅਤੇ ਹੋਰ ਠੋਸ ਚੀਜ਼ਾਂ
ਸੋਧੋਜਦੋਂ ਕਿਸੇ ਚੀਜ਼ ਦੇ ਮਾਸ (ਪੁੰਜ/ਮਾਦੇ) ਦਾ ਉਸਦੇ ਰੇਡੀਅਸ ਨਾਲ ਅਨੁਪਾਤ ਬਹੁਤ ਜਿਆਦਾ ਵਿਸ਼ਾਲ ਹੋ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਬਲੈਕ ਹੋਲਾਂ ਦੀ ਰਚਨਾ ਦਾ ਅਨੁਮਾਨ ਲਗਾਉਂਦੀ ਹੈ, ਜੋ ਸਪੇਸ ਦਾ ਅਜਿਹਾ ਖੇਤਰ ਹੁੰਦੀਆਂ ਹਨ ਜਿਸਤੋਂ ਕੋਈ ਵੀ ਚੀਜ਼, ਇੱਥੋਂ ਤੱਕ ਕਿ ਪ੍ਰਕਾਸ਼ ਵੀ, ਬਚ ਨਹੀਂ ਸਕਦਾ। ਸਟੈੱਲਰ ਐਵੋਲੀਊਸ਼ਨ ਦੇ ਤਾਜ਼ਾ ਸਵੀਕ੍ਰਿਤ ਮਾਡਲਾਂ ਵਿੱਚ, ਸੂਰਜ ਦੇ ਪੁੰਜ ਤੋਂ 1.4 ਗੁਣਾ ਦੇ ਲੱਘਭੱਗ ਵੱਡੇ ਮਾਸ ਵਾਲੇ ਨਿਊਟ੍ਰੌਨ ਸਟਾਰ, ਅਤੇ ਕੁੱਝ ਦਰਜਣ ਸੋਲਰ ਮਾਸਾਂ ਵਾਲੀਆਂ ਸਟੈੱਲਰ ਬਲੈਕ ਹੋਲਾਂ ਨੁੰ ਭਾਰੀ ਮਾਸ ਵਾਲੇ ਸਟਾਰਾਂ (ਤਾਰਿਆਂ) ਦੀ ਉਤਪੱਤੀ ਦਾ ਅੰਤਿਮ ਪੜਾਓ ਮੰਨਿਆ ਗਿਆ ਹੈ। ਆਮ ਤੌਰ ਤੇ ਇੱਕ ਗਲੈਕਸੀ ਵਿੱਚ ਇੱਕ ਬਹੁਤ ਭਾਰੀ (ਸੁਪਰਮੈੱਸਿਵ) ਬਲੈਕਹੋਲ ਹੁੰਦੀ ਹੈ ਜਿਸਦਾ ਕੇਂਦਰੀ ਮਾਸ ਕੁੱਝ ਮਿਲੀਅਨ ਤੋਂ ਲੈ ਕੇ ਕੁੱਝ ਬਿਲੀਅਨ ਸੋਲਰ ਮਾਸਾਂ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਇਸਦੀ ਹੋਂਦ ਨੂੰ ਗਲੈਕਸੀ ਦੀ ਫੌਰਮੇਸ਼ਨ (ਬਣਤਰ) ਅਤੇ ਵਿਸ਼ਾਲ ਬ੍ਰਹਿਮੰਡੀ ਬਣਤਰਾਂ ਦੀ ਫੌਰਮੇਸ਼ਨ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ ਰੋਲ ਅਦਾ ਕਰਦੀ ਸੋਚਿਆ ਜਾਂਦਾ ਹੈ।
ਅਸਟ੍ਰੌਨੋਮੀਕਲੀ (ਖਗੋਲ ਭੌਤਿਕ ਵਿਗਿਆਨ ਦੇ ਤਰੀਕੇ ਨਾਲ), ਠੋਸ ਸੰਘਣੀਆਂ ਚੀਜ਼ਾਂ ਦੀ ਸਭ ਤੋਂ ਜਿਆਦਾ ਮਹੱਤਵਪੂਰਨ ਵਿਸ਼ੇਸ਼ਤਾ ਇਹ ਹੁੰਦੀ ਹੈ ਕਿ ਉਹ ਗਰੈਵੀਟੇਸ਼ਨਲ ਐਨਰਜੀ ਨੂੰ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਰੇਡੀਏਸ਼ਨ ਵਿੱਚ ਤਬਦੀਲ ਕਰਨ ਲਈ ਸ਼ਾਨਦਾਰ ਕਾਬਲੀਅਤ ਵਾਲਾ ਮਕੈਨਿਜ਼ਮ (ਯੰਤਰ ਤਰੀਕਾ) ਮੁੱਹਈਆ ਕਰਵਾਉਂਦੇ ਹਨ। ਐਕਸਰਸ਼ਨ, ਜੋ ਸਟੈੱਲਰ ਜਾਂ ਸੁਪਰਮੈੱਸਿਵ ਬਲੈਕ ਹੋਲਾਂ ਵਿੱਚ ਗੈਸੀ ਪਦਾਰਥ ਜਾਂ ਧੂੜ ਦੇ ਕਣਾਂ ਦਾ ਡਿੱਗਣਾ ਹੈ, ਕੁੱਝ ਖਾਸ ਤੌਰ ਤੇ ਚਮਕੀਲੀਆਂ ਖਗੋਲੀ ਚੀਜ਼ਾਂ ਲਈ ਜਿਮੇਵਾਰ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ, ਜਿਹਨਾਂ ਵਿੱਚ ਨੋਟ ਕਰਨ ਯੋਗ ਹਨ; ਭਿੰਨ ਪ੍ਰਕਾਰ ਦੇ ਕ੍ਰਿਅਸ਼ੀਲ ਗਲੈਕਟਿਕ ਨਿਊਕਲੀਆਈ ਦਾ ਗਲੈਕਟਿਕ ਪੈਮਾਨੇ ਉੱਤੇ ਹੋਣਾ, ਅਤੇ ਸਟੈੱਲਰ ਦੇ ਅਕਾਰ ਦੀਆਂ ਚੀਜ਼ਾਂ ਜਿਵੇਂ ਮਾਈਕ੍ਰੋਕੁਆੱਸਰਾਂ ਦਾ ਹੋਣਾ। ਖਾਸ ਕਰ ਕੇ , ਏਕਸਰਸ਼ਨ ਰਿਲੇਟੀਵਿਸਟਿਕ ਜੈੱਟਸ ਦੀ ਅਗਵਾਈ ਕਰ ਸਕਦੇ ਹਨ, ਜੋ ਉੱਚ ਊਰਜਾ ਕਣਾਂ ਤੇ ਬੀਮ ਫੋਕਸ ਕਰਦੇ ਹਨ ਜੋ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਦੇ ਲੱਗਭੱਗ ਬਰਾਬਰ ਸਪੇ ਵਿੱਚ ਦੂਰ ਦਰਾਜ ਹੁੰਦੇ ਹਨ। ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਇਹਨਾਂ ਸਾਰੇ ਘਟਨਾਕ੍ਰਮਾਂ ਦੇ ਮਾਡਲ ਬਣਾਉਣ ਵਿੱਚ ਕੇਂਦਰੀ ਰੋਲ ਅਦਾ ਕਰਦੀ ਹੈ, ਅਤੇ ਨਿਰੀਖਣਾਂ (ਔਬਜ਼ਰਵੇਸ਼ਨਾਂ) ਨੇ ਥਿਊਰੀ ਰਾਹੀਂ ਅਨੁਮਾਨਿਤ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਵਾਲੀਆਂ ਬਲੈਕ ਹੋਲਾਂ ਦੀ ਹੋਂਦ ਲਈ ਸ਼ਕਤੀਸ਼ਾਲੀ ਸਬੂਤ ਮੁੱਹਈਆ ਕਰਵਾਏ ਹਨ।
ਬਲੈਕ ਹੋਲਾਂ ਦੀ ਗਰੈਵੀਟੇਸ਼ਨਲ ਤਰੰਗਾਂ ਲਈ ਖੋਜ ਵਿੱਚ ਨਿਸ਼ਾਨਿਆਂ ਵਿੱਚ ਵੀ ਮੰਗ ਹੈ। ਇੱਕ ਦੂਜੇ ਵਿੱਚ ਸੁੰਗੜ ਰਹੀਆਂ ਬਲੈਕ ਹੋਲ ਬਾਇਨਰੀਆਂ ਇੱਥੇ ਧਰਤੀ ਉੱਤੇ ਡਿਟੈਕਟਰਾਂ ਤੱਕ ਪਹੁੰਚਣ ਵਾਲੇ ਸ਼ਕਤੀਸ਼ਾਲੀ ਗਰੈਵੀਟੇਸ਼ਨਲ ਤਰੰਗਾਂ ਦੇ ਸਿਗਨਲਾਂ ਵਿੱਚੋਂ ਕੁੱਝ ਵੱਲ ਲੈ ਕੇ ਜਾ ਸਕਦੀਆਂ ਹਨ , ਅਤੇ ਇੱਕਠਾ ਹੋਣ ਤੋਂ ਪਹਿਲਾਂ ਦੀ ਅਵਸਥਾ ਦੇ ਫੇਜ਼ (ਚਰਪ) ਨੂੰ ਮਰਜਰ ਇਵੈਂਟਸ (ਇਕੱਠਾ ਹੋਣ ਦੀਆਂ ਘਟਨਾਵਾਂ) ਦੀ ਦੂਰੀ ਨਾਪਣ ਲਈ ਇੱਕ ਸਟੈਂਡਰਡ ਕੈਂਡਲ (ਮੋਮਬੱਤੀ) ਦੇ ਤੌਰ ਤੇ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਹੈ- ਅਤੇ ਇਸਤਰਾਂ ਜਿਆਦਾ ਦੂਰੀ ਉੱਤੇ ਕੌਸਮਿਕ (ਬ੍ਰਹਿਮੰਡੀ) ਫੈਲਾਓ ਦੀ ਖੋਜ ਵਜੋਂ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇੱਕ ਸਟੈੱਲਰ ਬਲੈਕ ਹੋਲ ਦੇ ਰੂਪ ਵਿੱਚ ਪੈਦਾ ਕੀਤੀ ਗਈ ਗਰੈਵੀਟੇਸ਼ਨਲ ਤਰੰਗ ਦਾ ਇੱਕ ਸੁਪਰਮੈੱਸਿਵ ਵਿੱਚ ਮਿਲ ਜਾਣਾ ਇਹ ਸਿੱਧੀ ਜਾਣਕਾਰੀ ਦਿੰਦਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਸੁਪਰਮਏੱਸਿਵ ਬਲੈਕ ਹੋਲ ਦੀ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਕੀ ਹੈ।
ਕੌਸਮੌਲੌਜੀ (ਬ੍ਰਹਿਮੰਡ ਵਿਗਿਆਨ)
ਸੋਧੋਬ੍ਰਹਿਮੰਡ ਵਿਗਿਆਨ ਦੇ ਤਾਜ਼ਾ ਮਾਡਲ ਆਈਨਸਟਾਈਨ ਦੀਆਂ ਫੀਲਡ ਇਕੁਏਸ਼ਨਾਂ ਉੱਤੇ ਅਧਾਰਿਤ ਹਨ, ਜਿਹਨਾਂ ਵਿੱਚ ਕੌਸਮੌਲੌਜੀਕਲ ਕੌਂਸਟੈਂਟ (ਬ੍ਰਹਿਮੰਡੀ ਸਥਿਰਾਂਕ) Λ ਸ਼ਾਮਿਲ ਹੈ ਕਿਉਂਕਿ ਬ੍ਰਹਿਮੰਡ ਦੇ ਵਿਸ਼ਾਲ ਪੈਮਾਨੇ ਦੇ ਡਾਇਨਾਮਿਕਸ ਉੱਪਰ ਇਸਦਾ ਮਹੱਤਵਪੂਰਨ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ,
ਜਿੱਥੇ gμν ਸਪੇਸਟਾਈਮ ਮੀਟ੍ਰਿਕ ਹੁੰਦਾ ਹੈ। ਇਹਨਾਂ ਇਕੁਏਸ਼ਨਾਂ ਦੇ ਆਈਸੋਟ੍ਰੋਪਿਕ ਅਤੇ ਹੋਮੋਜੀਅਨਸ ਸਲਿਊਸ਼ਨ , ਫਰੇਡਮਨ-ਲੀਮਿਟਰੇ-ਰੌਬਰਸਟਨ-ਵਾਲਕਰ ਸਲਿਊਸ਼ਨ, ਭੌਤਿਕ ਵਿਗਿਆਨੀਆਂ ਨੂੰ ਬ੍ਰਹਿਮੰਡ ਦਾ ਮਾਡਲ ਬਣਾਉਣ ਦੀ ਆਗਿਆ ਦਿੰਦੇ ਹਨ ਜੋ ਪਿਛਲੇ 14 ਬਿਲੀਅਨ ਸਾਲਾਂ ਤੋਂ ਕਿਸੇ ਗਰਮ, ਸ਼ੁਰੂਆਤੀ ਬਿੱਗ ਬੈਂਗ ਦੇ ਫੇਜ਼ ਤੋਂ ਉਤਪੰਨ ਹੋਇਆ ਹੈ। ਇੱਕ ਵਾਰ ਪੇਰਾਮੀਟਰਾਂ (ਮਾਪਦੰਡ ਜਿਵੇਂ ਬ੍ਰਹਿਮੰਡ ਦੀ ਔਸਤ ਮੈਟਰ ਘਣਤਾ/ਡੈੱਨਸਿਟੀ) ਦੀ ਕੁੱਝ ਸੰਖਿਆ ਨੂੰ ਖਗੋਲੀ ਨਿਰੀਖਣਾਂ ਰਾਹੀਂ ਫਿਕਸ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ, ਹੋਰ ਅੱਗੇ ਦੇ ਆਂਕੜਿਆਂ ਨੂੰ ਮਾਡਲਾਂ ਨੂੰ ਪਰਖਣ ਲਈ ਰੱਖ ਕੇ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਅਨੁਮਾਨ, ਜੋ ਸਭ ਤਰਾਂ ਨਾਲ ਸਾਰੇ ਸਫਲ ਰਹਿੰਦੇ ਹਨ, ਉਹਨਾਂ ਵਿੱਚ ਸ਼ਾਮਿਲ ਹੈ : ਪਰਿਮੌਰਡੀਅਲ (ਮੂਲ ਆਦਮ) ਨਿਊਕਲੀਓਸਿੰਥੈਸਿਸ ਦੇ ਇੱਕ ਪੀਰੀਅਡ ਵਿੱਚ ਬਣੇ ਰਸਾਇਣਕ ਤੱਤਾਂ ਦੀ ਸ਼ੁਰੂਆਤੀ ਬਹੁਤਾਤ, ਬ੍ਰਹਿਮੰਡ ਦੀ ਵਿਸ਼ਾਲ ਪੈਮਾਨੇ ਉੱਤੇ ਬਣਤਰ, ਅਤੇ ਸ਼ੁਰੂਆਤੀ ਬ੍ਰਹਿਮੰਡ ਤੋਂ ਇੱਕ “ਥਰਮਲ ਈਕੋ (ਗੂੰਜ)” ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਅਤੇ ਹੋਂਦ, ਕੌਸਮਿਕ ਬੈਕਗਰਾਉਂਡ ਰੇਡੀਏਸ਼ਨ।
ਬ੍ਰਹਿਮੰਡੀ ਫੈਲਾਓ ਦੇ ਖਗੋਲਿਕ ਦਰ ਦੇ ਨਿਰੀਖਣ ਬ੍ਰਹਿਮੰਡ ਵਿਚਲੇ ਕੁੱਲ ਪਦਾਰਥ ਦੀ ਮਾਤਰਾ ਦਾ ਅਨੁਮਾਨ ਲਗਾਉਣ ਦੀ ਆਗਿਆ ਦਿੰਦੇ ਹਨ, ਭਾਵੇਂ ਓਸ ਪਦਾਰਥ ਦੀ ਫਿਤਰਤ ਰਹੱਸ ਦਾ ਇੱਕ ਵੱਡਾ ਹਿੱਸਾ ਬਣੀ ਰਹਿੰਦੀ ਹੈ। ਸਾਰੇ ਪਦਾਰਥ ਦਾ ਲੱਗਭੱਗ 90% ਹਿੱਸਾ ਡਾਰਕ ਮੈਟਰ ਕਿਹਾ ਜਾਣ ਵਾਲਾ ਛੁਪਿਆ ਪਦਾਰਥ ਹੈ, ਜਿਸਦਾ ਮਾਸ (ਜਾਂ, ਇਸਦੇ ਸਮਾਨ ਹੀ ਗਰੈਵੀਟੇਸ਼ਨਲ ਪ੍ਰਭਾਵ) ਹੁੰਦਾ ਹੈ, ਪਰ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਤਰੀਕੇ ਨਾਲ ਕ੍ਰਿਆ ਨਹੀਂ ਕਰਦਾ ਅਤੇ, ਇਸਲਈ ਸਿੱਧੇ ਰੂਪ ਵਿੱਚ ਦੇਖਿਆ (ਔਬਜ਼ਰਵ ਕੀਤਾ) ਨਹੀਂ ਜਾ ਸਕਦਾ। ਇਸ ਕਿਸਮ ਦੇ ਮੈਟਰ (ਪਦਾਰਥ) ਲਈ ਕੋਈ ਸਰਵ ਸਧਾਰਣ ਸਵੀਕ੍ਰਿਤੀ ਵਾਲਾ ਵਿਵਰਣ ਵੀ ਨਹੀਂ ਹੈ, ਜੋ ਗਿਆਤ ਪਾਰਟੀਕਲ ਫਿਜਿਕਸ (ਕਣ ਭੌਤਿਕ ਵਿਗਿਆਨ) ਜਾਂ ਹੋਰ ਚੀਜ਼ ਦੇ ਢਾਂਚੇ ਦੇ ਅੰਦਰ ਹੋਵੇ। ਦੂਰ ਦਰਾਜ ਦੇ ਸੁਪਰਨੋਵਾ ਦੇ ਰੈੱਡਸ਼ਿਫਟ ਸਰਵੇਖਣ ਦੇ ਸਪਸ਼ਟ ਨਿਰੀਖਣ ਅਤੇ ਕੌਸਮਿਕ ਬੈਕਗਰਾਊਂਡ ਰੇਡੀਏਸ਼ਨ ਦੇ ਨਾਪ ਦਿਖਾਉਂਦੇ ਹਨ ਕਿ ਸਾਡੇ ਬ੍ਰਹਿਮੰਡ ਦੀ ਉਤਪੱਤੀ ਬ੍ਰਹਿਮੰਡੀ ਫੈਲਾਓ ਦੇ ਐਕਸਲਰੇਸ਼ਨ ਨੂੰ ਨਤੀਜੇ ਵਜੋਂ ਪੈਦਾ ਕਰਨ ਵਾਲੇ ਇੱਕ ਕੌਸਮੌਲੌਜੀਕਲ ਕੌਂਸਟੈਂਟ (ਬ੍ਰਹਿਮੰਡੀ ਸਥਿਰਾਂਕ) ਦੁਆਰਾ ਮਹੱਤਵਪੂਰਨ ਤਰੀਕੇ ਨਾਲ ਪ੍ਰਭਾਵਿਤ ਹੁੰਦੀ ਹੈ, ਜਾਂ ਇਸਦੇ ਸਮਾਨ ਹੀ ਕਹਿੰਦੇ ਹੋਏ, ਡਾਰਕ ਐਨਰਜੀ (ਗੁਪਤ ਊਰਜਾ) ਦੇ ਨਾਮ ਨਾਲ ਜਾਣੀ ਜਾਂਦੀ ਇੱਕ ਅਵਸਥਾ ਅਜੀਬ ਦੀ ਸਮੀਕਰਨ ਵਾਲੀ ਐਨਰਜੀ ਦੀ ਕਿਸਮ ਰਾਹੀਂ ਪ੍ਰਭਾਵਿਤ ਹੁੰਦੀ ਹੈ, ਜਿਸਦੀ ਫਿਤਰਤ ਅਸਪਸ਼ਟ ਰਹਿੰਦੀ ਹੈ।
ਇੱਕ ਇਨਫਲੇਸ਼ਨਰੀ ਫੇਜ਼ ਕਿਹਾ ਜਾਂਦਾ, ਸ਼ਕਤੀਸ਼ਾਲੀ ਐਕਸਲਰੇਸ਼ਨ ਵਾਲੇ ਫੈਲਾਓ ਦਾ ਇੱਕ ਵਾਧੂ ਫੇਜ਼, ਜੋ 10-33 ਸੈਕੰਡ ਦੇ ਕੌਸਮਿਕ ਟਾਈਮ ਦਾ ਹੁੰਦਾ ਹੈ, 1980 ਵਿੱਚ ਮਿੱਥਿਆ ਗਿਆ ਤਾਂ ਜੋ ਕਲਾਸੀਕਲ ਬ੍ਰਹਿਮੰਡੀ ਮਾਡਲਾਂ ਜਿਵੇਂ ਕੌਸਮਿਕ ਬੈਕਗਰਾਊਂਡ ਰੇਡੀਏਸ਼ਨ ਦੀ ਸੰਪੂਰਣ ਦੇ ਨੇੜੇ ਦੀ ਇੱਕਸਾਰਤਾ (ਹੋਮੋਜੀਨੀਅਟੀ), ਰਾਹੀਂ ਸਮਝਾਏ ਨਾ ਜਾ ਸਕੇ ਜਾਣ ਵਾਲੇ ਕਈ ਬੁਝਾਰਤਾਂ ਭਰੇ ਨਿਰੀਖਣਾਂ ਦਾ ਜਵਾਬ ਦਿੱਤਾ ਜਾ ਸਕੇ। ਕੌਸਮਿਕ ਬੈਕਗਰਾਉਂਡ ਰੇਡੀਏਸ਼ਨ ਦੇ ਤਾਜ਼ਾ ਦਿਨਾਂ ਦੇ ਨਾਪਾਂ ਨੇ ਇਸ ਪਰਿਦ੍ਰਿਸ਼ ਲਈ ਪਹਿਲਾ ਸਬੂਤ ਨਤੀਜੇ ਵਜੋਂ ਦਿੱਤਾ ਹੈ। ਫੇਰ ਵੀ, ਸੰਭਵ ਇਨਫਲੇਸ਼ਨਰੀ ਕਥਾਵਾਂ ਦੀ ਬਹੁਤ ਵੱਡੀ ਵੈਰਾਇਟੀ ਹੈ, ਜੋ ਤਾਜ਼ਾ ਨਿਰੀਖਣਾਂ ਤੱਕ ਹੀ ਸੀਮਤ ਨਹੀਂ ਕੀਤੀ ਜਾ ਸਕਦੀ। ਇੱਕ ਹੋਰ ਵੀ ਵੱਡਾ ਸਵਾਲ ਸ਼ੁਰੂਆਤੀ ਬ੍ਰਹਿਮੰਡ ਦਾ ਇਨਫਲੇਸ਼ਨਰੀ ਫੇਜ਼ ਤੋਂ ਪਹਿਲਾਂ ਦੀ ਭੌਤਿਕ ਵਿਗਿਆਨ ਹੈ ਜਿੱਥੇ ਬ੍ਰਹਿਮੰਡ ਵਿੱਚ ਕਲਾਸੀਕਲ ਮਾਡਲ ਬਿੱਗ ਬੈਂਗ ਸਿੰਗੁਲਰਟੀ ਦਾ ਅਨੁਮਾਨ ਲਗਾਉਂਦੇ ਹਨ। ਇੱਕ ਪ੍ਰਮਾਣਿਕ ਉੱਤਰ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਦੀ ਇੱਕ ਸੰਪੂਰਣ ਥਿਊਰੀ ਦੀ ਮੰਗ ਕਰਦਾ ਹੋ ਸਕਦਾ ਹੈ, ਜਿਸਨੂੰ ਅਜੇ ਤੱਕ ਵਿਕਸਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ।
ਟਾਈਮ ਟਰੈਵਲ (ਵਕਤ ਯਾਤਰਾ)
ਸੋਧੋਕਰਟ ਗਓਡਲ ਨੇ ਦਿਖਾਇਆ ਕਿ ਆਈਨਸਟਾਈਨ ਦੀਆਂ ਸਮੀਕਰਨਾਂ ਦੇ ਉਹ ਹੱਲ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ ਜੋ ਕਲੋਜ਼ਡ ਟਾਈਮਲਾਈਕ ਕਰਵਜ਼ (CTCs) (ਬੰਦ ਸਮੇਂ ਵਰੇਗੀਆਂ ਵਕਰਾਂ) ਰੱਖਦੇ ਹਨ, ਜੋ ਵਕਤ ਵਿੱਚ ਲੂਪਾਂ ਲਈ ਆਗਿਆ ਦਿੰਦੀਆਂ ਹਨ। ਹੱਲ ਅੱਤ ਦਰਜੇ ਦੀਆਂ ਭੌਤਿਕੀ ਸ਼ਰਤਾਂ ਦੀ ਮੰਗ ਕਰਦੇ ਹਨ ਜੋ ਅਭਿਆਸ ਵਿੱਚ ਵਾਪਰਨੀਆਂ ਅਸੰਭਵ ਹੀ ਹਨ, ਅਤੇ ਇਹ ਇੱਕ ਖੁੱਲਾ ਸਵਾਲ ਰਹਿ ਜਾਂਦਾ ਹੈ ਕਿ ਕੀ ਹੋਰ ਭੌਤਿਕ ਵਿਗਿਆਨ ਦੇ ਨਿਯਮ ਇਹਨਾਂ ਸਵਾਲਾਂ ਨੂੰ ਪੂਰੀ ਤਰਾਂ ਮੁਕਾ ਦੇਣਗੇ ਕਿ ਨਹੀਂ। ਉਦੋਂ ਤੋਂ ਹੋਰ- ਇਸੇ ਤਰਾਂ ਪ੍ਰੈਕਟੀਕਲ ਤਰੀਕੇ ਨਾਲ ਅਸੰਭਵ- GR ਹੱਲ CTCs ਵਾਲੇ ਖੋਜੇ ਗਏ ਹਨ, ਜਿਵੇਂ ਟੋਪਲਰ ਸਲੰਡਰ ਅਤੇ ਟਰਾਵਰਦੇਬਲ ਵਰਮਹੋਲ।
ਅਡਵਾਂਸ (ਵਿਕਸਿਤ) ਧਾਰਨਾਵਾਂ
ਸੋਧੋਕਾਰਣਾਤਮਿਕ ਬਣਤਰ ਅਤੇ ਭੂ-ਮੰਡਲੀ ਰੇਖਾਗਣਿਤ
ਸੋਧੋਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ, ਕੋਈ ਪਦਾਰਥਕ ਵਸਤੂ ਪ੍ਰਕਾਸ਼ ਦੀ ਪਲਸ ਨੂੰ ਨਹੀਂ ਪਕੜ ਸਕਦੀ ਜਾਂ ਓਸਤੋਂ ਜਿਆਦਾ ਤੇਜ਼ ਨਹੀਂ ਜਾ ਸਕਦੀ। A ਤੋਂ ਕਿਸੇ ਘਟਨਾ ਦਾ ਕੋਈ ਪ੍ਰਭਾਵ ਕਿਸੇ ਹੋਰ ਸਥਾਨ X ਤੇ ਪ੍ਰਕਾਸ਼ ਤੋਂ ਪਹਿਲਾਂ ਨਹੀਂ ਪਹੁੰਚ ਸਕਦਾ। ਨਤੀਜੇ ਵਜੋਂ, ਸਾਰੀਆਂ ਪ੍ਰਕਾਸ਼ ਸੰਸਾਰ-ਰੇਖਾਵਾਂ (ਨੱਲ-ਜੀਓਡੈਸਿਕਾਂ) ਦਾ ਇੱਕ ਵਿਵਰਣ ਸਪੇਸ-ਟਾਈਮ ਦੀ ਕਾਰਣਤਾਮਿਕ ਬਣਤਰ ਬਾਰੇ ਪ੍ਰਮੁੱਖ ਜਾਣਕਾਰੀ ਪੈਦਾ ਕਰਦਾ ਹੈ। ਇਸ ਬਣਤਰ ਨੂੰ ਪੈੱਨਰੋਜ਼-ਕਾਰਟਰ ਚਿੱਤਰ ਵਰਤ ਕੇ ਦਿਖਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਸਪੇਸ ਦੇ ਅਨੰਤ ਵਿਸ਼ਾਲ ਖੇਤਰ ਅਤੇ ਅਨੰਤ ਟਾਈਮ ਅਰਸੇ ਇਸਤਰਾਂ ਸੁੰਗੜ ਜਾਂਦੇ ਹਨ ਕਿ ਕਿਸੇ ਸੀਮਤ ਨਕਸ਼ੇ ਵਿੱਚ ਫਿੱਟ ਹੋ ਸਕਣ, ਜਦੋਂਕਿ ਸਟੈਂਡਰਡ ਸਪੇਸਟਾਇਮ ਡਾਇਗਰਾਮਾਂ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਅਜੇ ਵੀ ਡਾਇਗਨਲਾਂ ਦੇ ਨਾਲ ਨਾਲ ਗਤੀ ਕਰਦਾ ਹੈ।
ਕਾਰਣਾਤਮਿਕ ਬਣਤਰ ਦੀ ਮਹੱਤਤਾ ਬਾਰੇ ਜਾਗਰੂਕ, ਰੋਜ਼ਰ ਪੈੱਨਰੋਜ਼ ਅਤੇ ਹੋਰਾਂ ਨੇ ਜੋ ਵਿਕਸਿਤ ਕੀਤਾ ਉਸ ਨੂੰ ਗਲੋਬਲ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਦੇ ਨਾਮ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ। ਭੂਮੰਡਲ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਵਿੱਚ, ਅਧਿਐਨ ਵਾਲੀ ਚੀਜ਼ ਆਈਨਸਟਾਈਨ ਦੀਆਂ ਸਮੀਕਰਨਾਂ ਲਈ ਕੋਈ ਖਾਸ ਹੱਲ (ਜਾਂ ਹੱਲਾਂ ਦਾ ਸਮੂਹ) ਨਹੀਂ ਹੈ। ਸਗੋਂ, ਜੋ ਸਬੰਧ ਸਾਰੇ ਜੀਓਡੈਸਿਕਾਂ ਲਈ ਖਰੇ ਉਤਰਦੇ ਹਨ, ਜਿਵੇਂ ਰਾਏਚੌਧਰੀ ਇਕੁਏਸ਼ਨ, ਅਤੇ ਪਦਾਰਥ ਦੀ ਫਿਤਰਤ ਬਾਰੇ ਵਾਧੂ ਗੈਰ-ਖਾਸ ਮਾਨਤਾਵਾਂ (ਆਮ ਤੌਰ ਤੇ ਐਨਰਜੀ ਕੰਡੀਸ਼ਨਾਂ ਕਹੀ ਜਾਣ ਵਾਲੀ ਕਿਸਮ) ਆਮ ਰਿਜ਼ਲਟਾਂ ਨੂੰ ਕੱਢਣ ਲਈ ਵਰਤੇ ਜਾਂਦੇ ਹਨ।
ਹੌਰਿਜ਼ਨ (ਖਸ਼ਿਤਿਜ)
ਸੋਧੋਭੂ-ਮੰਡਲ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਵਰਤਦੇ ਹੋਏ, ਕੁੱਝ ਸਪੇਸਟਾਈਮਾਂ ਨੂੰ ਹੌਰਿਜ਼ਨਾਂ ਨਾਮਕ ਹੱਦਾਂ ਰੱਖਦੇ ਹੋਏ ਦਿਖਾਇਆ ਜਾ ਸਕਦਾ ਹੈ, ਜੋ ਸਪੇਸਟਾਈਮ ਦੇ ਬਾਕੀ ਹਿੱਸੇ ਤੋਂ ਕਿਸੇ ਇੱਕ ਹਿੱਸੇ ਦੀ ਹੱਦਬੰਦੀ ਕਰਦੇ ਹਨ। ਬਲੈਕ ਹੋਲਾਂ ਜਾਣੀਆਂ ਪਛਾਣੀਆਂ ਉਦਾਹਰਨਾਂ ਹਨ: ਜੇਕਰ ਮਾਸ ਨੂੰ ਸਪੇਸ ਦੇ ਜਰੂਰਤ ਮੁਤਾਬਿਕ ਕਾਫੀ ਸੰਘਣੇ ਹਿੱਸੇ ਵਿੱਚ ਦਬਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ (ਜਿਵੇਂ ਹੂਪ ਅਨੁਮਾਨ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ, ਸਾਪੇਖਿਕ ਲੰਬਾਈ ਸਕੇਲ/ਪੈਮਾਨਾ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਰੇਡੀਅਸ ਹੁੰਦਾ ਹੈ), ਅੰਦਰ ਵਾਲੇ ਪਾਸੇ ਤੋਂ ਕੋਈ ਵੀ ਪ੍ਰਕਾਸ਼ ਬਾਹਰ ਨਹੀਂ ਜਾ ਸਕਦਾ। ਕਿਉਂਕਿ ਕੋਈ ਵੀ ਚੀਜ਼ ਪ੍ਰਕਾਸ਼ ਦੀ ਪਲਸ (ਕੰਪਨ) ਨੂੰ ਓਵਰਟੇਕ ਨਹੀਂ ਕਰ ਸਕਦੀ (ਅੱਗੇ ਨਹੀਂ ਨਿਕਲ ਸਕਦੀ), ਸਾਰਾ ਅੰਦ੍ਰੂਨੀ ਪਦਾਰਥ ਬੰਦੀ ਬਣਿਆ ਰਹਿੰਦਾ ਹੈ। ਬਾਹਰ ਵਾਲੇ ਪਾਸੇ ਤੋਂ ਅੰਦਰ ਵੱਲ ਨੂੰ ਲਾਂਘਾ ਅਜੇ ਵੀ ਸੰਭਵ ਹੁੰਦਾ ਹੈ, ਜੋ ਦਿਖਾਉਂਦਾ ਹੈ ਕਿ ਬਲੈਕ ਹੋਲ ਦਾ ਹੌਰਿਜ਼ਨ, ਜਿਸ ਨੂੰ ਹੱਦ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਭੌਤਿਕੀ ਹੱਦ ਨਹੀਂ ਹੁੰਦੀ।
ਬਲੈਕ ਹੋਲਾਂ ਦਾ ਸ਼ੁਰੂਆਤੀ ਅਧਿਐਨ ਆਈਨਸਟਾਈਨ ਦੀਆਂ ਸਮੀਕਰਨਾਂ ਦੇ ਸੁਸਪਸ਼ੱਟ ਹੱਲਾਂ ਉੱਤੇ ਅਧਾਰਿਤ ਰਹੇ, ਜਿਹਨਾਂ ਵਿੱਚੋਂ ਨੋਟ ਕਰਨ ਵਾਲੇ ਹੱਲ ਸਨ; ਸਫੈਰੀਕਲੀ ਸਮਿੱਟਰਿਕ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਹੱਲ (ਜੋ ਸਥਿਰ ਬਲੈਕ ਹੋਲ ਨੂੰ ਦਰਸਾਉਣ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ) ਅਤੇ ਐਕਸਿਸ-ਸਮਿੱਟਰਿਕ ਕੈੱਰਰ ਹੱਲ (ਜੋ ਘੁੰਮ ਰਹੀ, ਸਟੇਸ਼ਨਰੀ ਬਲੈਕ ਹੋਲ ਨੂੰ ਦਰਸਾਉਣ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਅਰਗੋਸਫੀਅਰ ਵਰਗੇ ਗੁਣਾਂ ਨਾਲ ਜਾਣ ਪਛਾਣ ਕਰਵਾਉਂਦਾ ਹੈ)। ਗਲੋਬਲ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਵਰਤਦੇ ਹੋਏ, ਬਾਦ ਦੇ ਅਧਿਐਨਾਂ ਨੇ ਬਲੈਕ ਹੋਲਾਂ ਦੀਆਂ ਹੋਰ ਆਮ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਨੂੰ ਫਰੋਲਿਆ ਹੈ। ਲੰਬੀ ਯਾਤਰਾ ਵਿੱਚ, ਓਹ ਸਰਲ ਚੀਜ਼ਾਂ ਹੁੰਦੀਆਂ ਹਨ ਜੋ ਗਿਆਰਾਂ ਪੈਰਾਮੀਟਰਾਂ ਰੱਖਦੀਆਂ ਹਨ ਜੋ ਐਨਰਜੀ, ਲੀਨੀਅਰ ਮੋਮੈਂਟਮ, ਐੰਗੁਲਰ ਮੋਮੈਂਟਮ, ਕਿਸੇ ਖਾਸ ਸਮੇਂ ਵਿੱਚ ਸਥਿਤੀ, ਅਤੇ ਇਲੈਕਟ੍ਰਿਕ ਚਾਰਜ ਨੂੰ ਵਿਸ਼ੇਸ਼ ਕਰ ਕੇ ਦਰਸਾਉਂਦੇ ਹਨ। ਇਹ ਬਲੈਕ ਹੋਲ ਯੂਨੀਕਨੈੱਸ ਥਿਊਰਮਾਂ ਰਾਹੀਂ ਬਿਆਨ ਕੀਤਾ ਜਾਂਦਾ ਹੈ: “ਬਲੈਕ ਹੋਲਾਂ ਦੇ ਵਾਲ ਨਹੀਂ ਹੁੰਦੇ”, ਯਾਨਿ ਕਿ, ਮਨੁੱਖਾਂ ਦੇ ਵਾਲਾਂ ਦੇ ਸਟਾਈਲ ਵਾਂਗ ਕੋਈ ਵੱਖਰਾ ਕਰਨ ਵਾਲੀਆਂ ਨਿਸ਼ਾਨੀਆਂ ਨਹੀਂ ਹੁੰਦੀਆਂ। ਕੋਈ ਬਲੈਕ ਹੋਲ ਨੂੰ ਬਣਾਉਣ ਲਈ ਗਰੈਵਿਟੀ ਵਾਲੀਆਂ ਚੀਜ਼ਾਂ ਦੇ ਟਕਰਾਉਣ ਦੀ ਗੁੰਝਲਦਾਰਤਾ ਦੀ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਨਾ ਰੱਖਦੇ ਹੋਏ, ਜੋ ਚੀਜ਼ ਨਤੀਜੇ ਵਿੱਚ ਮਿਲਦੀ ਹੈ (ਗਰੈਵੀਟੇਸ਼ਨਲ ਤਰੰਗਾਂ ਬਾਹਰ ਕੱਢ ਕੇ) ਬਹੁਤ ਸਰਲ ਹੁੰਦੀ ਹੈ।
ਹੋਰ ਜਿਆਦਾ ਧਿਆਨਯੋਗ ਦੇਣ ਵਾਲੀ ਗੱਲ ਹੈ ਕਿ, ਬਲੈਕ ਹੋਲ ਮਕੈਨਿਕਸ ਨਾਮ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਇੱਕ ਸਿਧਾਂਤਾ ਦਾ ਸੈੱਟ ਹੁੰਦਾ ਹੈ, ਜੋ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਸਿਧਾਂਤਾਂ ਸਮਾਨ ਹੀ ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਨ ਵਜੋਂ, ਬਲੈਕ ਹੋਲ ਮਕੈਨਿਕਸ ਦੇ ਦੂਜੇ ਸਿਧਾਂਤ ਮੁਤਾਬਿਕ, ਕਿਸੇ ਆਮ ਬਲੈਕ ਹੋਲ ਦੇ ਈਵੈਂਟ ਹੌਰਿਜ਼ਨ (ਘਟਨਾ-ਖਿਸ਼ਿਤਿਜ) ਦਾ ਖੇਤਰ ਵਕਤ ਦੇ ਨਾਲ ਕਦੇ ਨਹੀਂ ਘਟੇਗਾ, ਜੋ ਕਿ ਕਿਸੇ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਸਿਸਟਮ ਦੀ ਐਨਟ੍ਰੌਪੀ ਸਮਾਨ ਹੈ। ਇਹ ਉਸ ਐਨਰਜੀ ਨੂੰ ਸੀਮਤ ਕਰ ਦਿੰਦਾ ਹੈ ਜੋ ਕਿਸੇ ਘੁੰਮ ਰਹੀ ਬਲੈਕ ਹੋਲ ਤੋਂ ਕਲਾਸੀਕਲ ਤਰੀਕਿਆਂ ਨਾਲ ਕੱਢੀ ਜਾ ਸਕਦੀ ਹੈ (ਜਿਵੇਂ ਪੈੱਨਰੋਜ਼ ਪ੍ਰੋਸੈੱਸ)। ਇਸ ਗੱਲ ਦੇ ਸ਼ਕਤੀਸ਼ਾਲੀ ਸਬੂਤ ਹਨ ਕਿ ਬਲੈਕ ਹੋਲ ਮਕੈਨਿਕਸ ਦੇ ਸਿਧਾਂਤ, ਦਰਅਸਲ, ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਸਿਧਾਂਤਾਂ ਦਾ ਹੀ ਇੱਕ ਸਬਸੈੱਟ ਹੈ, ਅਤੇ ਇਸ ਗੱਲ ਦੇ ਵੀ ਪੱਕੇ ਸਬੂਤ ਮਿਲਦੇ ਹਨ ਕਿ ਬਲੈਕ ਹੋਲ ਖੇਤਰ ਇਸਦੀ ਐਨਟ੍ਰੌਪੀ ਦੇ ਅਨੁਪਾਤਕ ਹੁੰਦਾ ਹੈ। ਇਹ ਬਲੈਕ ਹੋਲ ਮਕੈਨਿਕਸ ਦੇ ਮੂਲ ਸਿਧਾਂਤਾਂ ਵਿੱਚ ਇੱਕ ਸੁਧਾਰ ਦੀ ਮੰਗ ਕਰਦਾ ਹੈ: ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਜਿਵੇਂ ਬਲੈਕ ਹੋਲ ਮਕੈਨਿਕਸ ਦਾ ਦੂਜਾ ਸਿਧਾਂਤ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਦੂਜੇ ਸਿਧਾਂਤ ਦਾ ਹਿੱਸਾ ਬਣ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਬਲੈਕ ਹੋਲ ਖੇਤਰ ਨੂੰ ਘਟਾਉਣਾ ਸੰਭਵ ਹੋ ਜਾਂਦਾ ਹੈ- ਜਿੰਨੀ ਦੇਰ ਤੱਕ ਹੋਰ ਪ੍ਰਕ੍ਰਿਆਵਾਂ ਇਹ ਯਕੀਨੀ ਬਣਾਉਂਦੀਆਂ ਹਨ ਕਿ ਸਾਰੀ ਦੀ ਸਾਰੀ ਐਨਟ੍ਰੌਪੀ ਘਟਦੀ ਹੈ। ਜਿਵੇਂ ਗੈਰ-ਜ਼ੀਰੋ ਤਾਪਮਾਨ ਵਾਲੀਆਂ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਚੀਜ਼ਾਂ ਕਰਦੀਆਂ ਹਨ, ਬਲੈਕ ਮਹੋਲਾਂ ਨੂੰ ਵੀ ਥਰਮਲ ਰੇਡੀਏਸ਼ਨ ਬਾਹਰ ਕੱਢਣੀ ਚਾਹੀਦੀ ਹੈ। ਅਰਧ-ਕਲਾਸੀਕਲ ਕੈਲਕੁਲੇਸ਼ਨਾਂ ਇਸ਼ਾਰਾ ਕਰਦੀਆਂ ਹਨ ਕਿ ਸੱਚਮੁੱਚ ਉਹ ਅਜਿਹਾ ਕਰਦੀਆਂ ਹਨ, ਜਿਸ ਵਿੱਚ ਸਤਹਿ ਗਰੈਵਿਟੀ ਪਲੈਂਕ ਦੇ ਨਿਯਮ ਵਿੱਚ ਤਾਪਮਾਨ ਦਾ ਰੋਲ ਅਦਾ ਕਰਦੀ ਹੈ। ਇਸ ਰੇਡੀਏਸ਼ਨ ਨੂੰ ਹਾਕਿੰਗ ਰੇਡੀਏਸ਼ਨ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।
ਹੌਰਿਜ਼ਨਾਂ ਦੇ ਹੋਰ ਰੂਪ ਵੀ ਹੁੰਦੇ ਹਨ। ਕਿਸੇ ਫੈਲਦੇ ਬ੍ਰਹਿਮੰਡ ਅੰਦਰ, ਕੋਈ ਦਰਸ਼ਨ ਖੋਜ ਸਕਦਾ ਹੈ ਕਿ ਭੂਤਕਾਲ ਦੇ ਕੁੱਝ ਖੇਤਰਾਂ ਨੂੰ ਦੇਖਿਆ ਨਹੀਂ ਜਾ ਸਕਦਾ (ਪਾਰਟੀਕਲ ਹੌਰਿਜ਼ਨਜ਼), ਅਤੇ ਭਵਿੱਖ ਦੇ ਕੁੱਝ ਖੇਤਰਾਂ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ (ਇਵੈਂਟ ਹੌਰਿਜ਼ਨ)। ਇੱਥੋਂ ਤੱਕ ਕਿ ਫਲੈਟ ਮਿੰਕੋਵਸਕੀ ਸਪੇਸ ਅੰਦਰ, ਜਦੋਂ ਕਿਸੇ ਐਕਸਲਰੇਟ ਹੋ ਰਹੇ ਦਰਸ਼ਕ ਰਾਹੀਂ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੋਵੇ (ਰਿੰਡਲਰ ਸਪੇਸ), ਇੱਕ ਅਰਧ-ਕਲਾਸੀਕਲ ਰੇਡੀਏਸ਼ਨ ਨਾਲ ਜੁੜੇ ਹੌਰਿਜ਼ਨ ਹੁੰਦੇ ਹਨ ਜਿਹਨਾਂ ਨੂੰ ਅਨਰੂੱਹ ਰੇਡੀਏਸ਼ਨ ਕਹਿੰਦੇ ਹਨ।
ਸਿੰਗੂਲਰਟੀਆਂ
ਸੋਧੋਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਇੱਕ ਹੋਰ ਆਮ ਲੱਛਣ ਸਿੰਗੂਲਰਟੀਆਂ ਦੇ ਨਾਮ ਨਾਲ ਜਾਣੀਆਂ ਜਾਂਦੀਆਂ ਸਪੇਸਟਾਈਮ ਹੱਦਾਂ ਦੀ ਹੋਂਦ ਹੈ। ਸਪੇਸਟਾਈਮ ਨੂੰ ਟਾਈਮਲਾਈਕ ਅਤੇ ਲਾਈਟਲਾਈਕ ਜੀਓਡੈਸਿਕਾਂ ਦਾ ਪਿੱਛਾ ਕਰਕੇ ਫਰੋਲਿਆ ਜਾ ਸਕਦਾ ਹੈ- ਜੋ ਪ੍ਰਕਾਸ਼ ਅਤੇ ਫਰੀ ਫਾਲ ਅਧੀਨ ਕਣਾਂ ਦੁਆਰਾ ਯਾਤਰਾ ਕਰਨ ਵਾਲੇ ਸਾਰੇ ਸੰਭਵ ਰਸਤੇ ਹੁੰਦੇ ਹਨ। ਪਰ ਆਈਨਸਟਾਈਨ ਦੀਆਂ ਸਮੀਕਰਨਾਂ ਦੇ ਕੁੱਝ ਹੱਲਾਂ ਦੇ “ਰੈਗਡ ਐੱਜਜ਼” (ਫਟੇ ਹੋਏ ਕਿਨਾਰੇ) ਹੁੰਦੇ ਹਨ – ਜਿਹਨਾਂ ਨੂੰ ਸਪੇਸਟਾਈ, ਸਿੰਗੂਲਰਟੀਆਂ ਦੇ ਖੇਤਰ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਜਿੱਥੇ ਪ੍ਰਕਾਸ਼ ਅਤੇ ਡਿੱਗ ਰਹੇ ਕਣਾਂ ਦੇ ਰਸਤੇ ਇੱਕ ਅਚਾਨਕ ਸਿਰੇ ਤੱਕ ਆ ਜਾਂਦੇ ਹਨ, ਅਤੇ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨਾ ਕਠਿਨ ਹੋ ਜਾਂਦਾ ਹੈ। ਜਿਆਦਾ ਦਿਲਚਸਪ ਮਾਮਲਿਆਂ ਵਿੱਚ, “ਕਰਵੇਚਰ ਸਿੰਗੂਲਰਟੀਆਂ” ਹੁੰਦੀਆਂ ਹਨ, ਜਿੱਥੇ ਸਪੇਸਟਾਈਮ ਕਰਵੇਚਰ ਨੂੰ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੇਣ ਵਾਲੀਆਂ ਜੀਓਮੈਟ੍ਰਿਕ ਮਾਤਰਾਵਾਂ, ਜਿਵੇਂ ਰਿੱਚੀ ਸਕੇਲਰ, ਅਨੰਤ ਮੁੱਲ ਲੈ ਲੈਂਦੀਆਂ ਹਨ। ਭਵਿੱਖ ਦੀਆਂ ਸਿੰਗੂਲਰਟੀਆਂ ਵਾਲੇ ਸਪੇਸਟਾਈਮਾਂ ਦੀਆਂ ਚੰਗੀ ਤਰਾਂ ਜਾਣੀਆਂ ਪਛਾਣੀਆਂ ਉਦਾਹਰਨਾਂ – ਜਿੱਥੇ ਸੰਸਾਰ ਰੇਖਾਵਾਂ ਮੁੱਕ ਜਾਂਦੀਆਂ ਹਨ- ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਹੱਲ ਹਨ, ਜੋ ਕਿਸੇ ਚਿਰਸਥਾਈ ਸਥਿਰ ਬਲੈਕ ਹੋਲ ਅੰਦਰ ਕਿਸੇ ਸਿੰਗੁਲਰਟੀ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ, ਜਾਂ ਕੈੱਰਰ ਸਲਿਉਸ਼ਨ ਹੈ ਜੋ ਇੱਕ ਚਿਰਸਥਾਈ ਘੁੰਮ ਰਹੀ ਬਲੈਕ ਹੋਲ ਅੰਦਰ ਇੱਕ ਛੱਲੇ ਦੀ ਸ਼ਕਲ ਵਰਗੀ ਸਿੰਗੁਲਰਟੀ ਨਾਲ ਹੈ। ਫਰੇਡਮੈਨ-ਲੀਮਿਟਰੇ-ਰੌਬਰਸਟਨ-ਵਾਕਰ ਸਲਿਊਸ਼ਨਜ਼ ਅਤੇ ਬ੍ਰਹਿਮੰਡਾਂ ਨੂੰ ਦਰਸਾਉਣ ਵਾਲੇ ਹੋਰ ਸਪੇਸਟਾਈਮਾਂ ਦੀਆਂ ਭੂਤਕਾਲ ਵਿੱਚ ਸਿੰਗੂਲਰਟੀਆਂ ਹੁੰਦੀਆਂ ਹਨ ਜਿੱਥੋਂ ਸੰਸਾਰ ਰੇਖਾਵਾਂ ਸ਼ੁਰੂ ਹੁੰਦੀਆਂ ਹਨ, ਜਿਹਨਾਂ ਨੂੰ ਬਿੱਗ ਬੈਂਗ ਸਿੰਗੂਲਰਟੀਆਂ ਕਹਿੰਦੇ ਹਨ, ਅਤੇ ਕੁੱਝ ਦੀਆਂ ਭਵਿੱਖ ਵਿੱਚ ਸਿੰਗੂਲਰਟੀਆਂ (ਬਿੱਗ-ਕਰੰਚ) ਵੀ ਹੁੰਦੀਆਂ ਹਨ।
ਇਹਨਾਂ ਉਦਾਹਰਨਾਂ ਦੇ ਉੱਚ ਦਰਜੇ ਨਾਲ ਸਮਿੱਟਰਿਕ ਹੋਣਾ ਦਿੱਤੇ ਹੋਣ ਤੇ- ਅਤੇ ਸਰਲ ਕੀਤੇ ਹੋਣ ਤੇ- ਇਹ ਨਤੀਜਾ ਕੱਢਣਾ ਅਕਰਸ਼ਕ ਹੋਵੇਗਾ ਕਿ ਸਿੰਗੂਲਰਟੀਆਂ ਦੀ ਹੋਂਦ ਆਦਰਸ਼ ਰੂਪ ਦੇਣ ਦਾ ਆਰਟੀਫੈਕਟ (ਅਜਿਹੀ ਧਾਰਨਾ ਜੋ ਵਿਗਿਆਨਿਕ ਤੌਰ ਤੇ ਜਾਂਚੀ ਗਈ ਹੁੰਦੀ ਹੈ ਪਰ ਕੁਦਰਤੀ ਤੌਰ ਤੇ ਹਾਜ਼ਰ ਨਹੀਂ ਹੁੰਦੀ) ਹੈ। ਪ੍ਰਸਿੱਧ ਸਿੰਗੂਲਰਟੀ ਥਿਊਰਮ, ਜੋ ਗਲੋਬਲ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਦੇ ਤਰੀਕਿਆਂ ਨਾਲ ਸਾਬਤ ਕੀਤੀ ਗਈ ਹੈ, ਹੋਰ ਤਰਾਂ ਦੱਸਦੀ ਹੈ: ਸਿੰਗੂਲਰਟੀਆਂ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਆਮ ਲੱਛਣ ਹਨ, ਅਤੇ ਇੱਕ ਵਾਰ ਕਿਸੇ ਸੱਚਮੁੱਚ ਦੇ ਪਦਾਰਥ ਵਾਲੀ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਵਾਲੀ ਚੀਜ਼ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਸਟੇਜ ਤੋਂ ਪਰੇ ਚਲੇ ਜਾਣ ਕਾਰਨ ਖਾਤਮਾ ਹੋ ਜਾਵੇ ਤਾਂ ਇਹ ਰੋਕੀਆ ਨਾ ਜਾ ਸਕਣ ਵਾਲੀਆਂ ਹੁੰਦੀਆਂ ਹਨ, ਅਤੇ ਫੈਲ ਰਹੇ ਬ੍ਰਹਿਮੰਡਾਂ ਦੀ ਇੱਕ ਵਿਸ਼ਾਲ ਰੇਂਜ ਦੀ ਸ਼ੁਰੂਆਤ ਤੇ ਹੁੰਦੀਆਂ ਹਨ। ਫੇਰ ਵੀ, ਥਿਊਰਮਾਂ ਵਿੱਚ ਸਿੰਫੂਲਰਟੀਆਂ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਬਾਰੇ ਬਹੁਤ ਘੱਟ ਬਿਆਨ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਅਤੇ ਤਾਜ਼ਾ ਰਿਸਰਚ ਦਾ ਜਿਆਦਾਤਰ ਹਿੱਸਾ ਇਹਨਾਂ ਇਕਾਈਆਂ ਆਮ ਬਣਤਰਾਂ (ਮਿੱਥਾਂ ਜਿਵੇਂ BKL ਅਨੁਮਾਨ) ਦੇ ਲੱਛਣਾਂ ਨੂੰ ਦੱਸਣ ਵੱਲ ਸਮਰਪਿਤ ਹੈ। ਕੌਸਮਿਕ ਸੈਂਸਰਸ਼ਿਪ ਹਾਇਪੋਥੀਸਿਸ ਬਿਆਨ ਕਰਦਾ ਹੈ ਕਿ ਸਾਰੀਆਂ ਯਥਾਰਥਵਾਦੀ ਭਵਿੱਖ ਦੀਆਂ ਸਿੰਗੂਲਰਟੀਆਂ (ਸੰਪੂਰਣ ਸਮਰੂਪਤਾ ਤੋਂ ਬਗੈਰ,ਯਥਾਰਥਵਾਦੀ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਵਾਲਾ ਪਦਾਰਥ) ਕਿਸੇ ਹੌਰਿਜ਼ਨ ਦੇ ਥੱਲੇ ਸੁਰੱਖਿਅਤ ਤਰੀਕੇ ਨਾਲ ਛੁਪੀਆਂ ਹੋਈਆਂ ਹਨ, ਅਤੇ ਇਸਤਰਾਂ ਸਾਰੇ ਦੂਰ ਸਥਿਤ ਦਰਸ਼ਕਾਂ ਤੋਂ ਅਲੋਪ ਰਹਿੰਦੀਆਂ ਹਨ। ਜਦੋਂ ਕਿ ਕੋਈ ਰਸਮੀਂ ਸਬੂਤ ਅਜੇ ਮੌਜੂਦ ਨਹੀਂ ਹੈ, ਸੰਖਿਅਕ ਬਣਾਵਟਾਂ ਇਸਦੀ ਪ੍ਰਮਾਣਿਕਤਾ ਪ੍ਰਤਿ ਸਮਰਥਨ ਦੀ ਗਵਾਹੀ ਪੇਸ਼ ਕਰਦੀਆਂ ਹਨ।
ਉਤਪੱਤੀ ਸਮੀਕਰਨਾਂ (ਐਵੋਲੀਊਸ਼ਨ ਇਕੁਏਸ਼ਨਾਂ)
ਸੋਧੋਆਈਨਸਟਾਈਨ ਦੀਆਂ ਇਕੁਏਸ਼ਨਾਂ ਦਾ ਹਰੇਕ ਹੱਲ ਕਿਸੇ ਬ੍ਰਹਿਮੰਡ ਦੇ ਸਾਰੇ ਇਤਿਹਾਸ ਨੂੰ ਅਪਣੇ ਅੰਦਰ ਸਮੇਟੀ ਰੱਖਦਾ ਹੈ- ਇਹ ਸਿਰਫ ਕੋਈ ਸਨੈਪਸ਼ੌਟ (ਤਸਵੀਰ) ਨਹੀਂ ਹੈ ਕਿ ਚੀਜ਼ਾਂ ਕਿਵੇਂ ਹੁੰਦੀਆਂ ਹਨ, ਪਰ ਇੱਕ ਸੰਪੂਰਣ, ਸੰਭਵ ਤੌਰ ਤੇ ਪਦਾਰਥ ਨਾਲ ਭਰਿਆ, ਸਪੇਸਟਾਈਮ ਹੁੰਦਾ ਹੈ। ਇਹ ਪਦਾਰਥ ਦੀ ਅਵਸਥਾ ਅਤੇ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਨੂੰ ਹਰੇਕ ਜਗਹ ਦਰਸਾਉਂਦਾ ਹੈ ਅਤੇ ਓਸ ਖਾਸ ਬ੍ਰਹਿਮੰਡ ਵਿੱਚ ਹਰੇਕ ਪਲ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਇਸਦੀ ਆਮ ਕੋਵੇਰੀਐਂਸ ਕਾਰਨ, ਆਈਨਸਟਾਈਨ ਦੀ ਥਿਊਰੀ ਅਪਣੇ ਆਪ ਵਿੱਚ ਮੀਟ੍ਰਿਕ ਟੈਂਸਰ ਦੀ ਵਕਤ ਉਤਪੱਤੀ (ਟਾਈਮ ਐਵੋਲੀਊਸ਼ਨ) ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਨ ਲਈ ਕਾਫੀ ਨਹੀਂ ਹੈ। ਇਸਨੂੰ ਕਿਸੇ ਕੋਆਰਡੀਨੇਟ ਕੰਡੌਸ਼ਨ (ਨਿਰਦੇਸ਼ਾਂਕ-ਸ਼ਰਤ) ਨਾਲ ਮਿਲਾਉਣਾ ਪੈਂਦਾ ਹੈ, ਜੋ ਹੋਰ ਫੀਲਡ ਥਿਊਰੀਆਂ ਵਿੱਚ ਗੇਜ ਫਿਕਸਿੰਗ (ਪੈਮਾਨਾ ਸਥਿਰ ਕਰਨ) ਦੇ ਸਮਸਾਨ ਹੈ।
ਆਈਨਸਟਾਈਨ ਸਮੀਕਰਨਾਂ ਨੂੰ ਅੰਸ਼ਿਕ ਡਿੱਫਰੈਂਸ਼ੀਅਲ ਇਕੁਏਸ਼ਨਾਂ ਦੇ ਤੌਰ ਤੇ ਸਮਝਣ ਲਈ, ਇਹਨਾਂ ਨੂੰ ਇੱਕ ਅਜਿਹੇ ਤਰੀਕੇ ਨਾਲ ਫਾਰਮੂਲਾਬੱਧ ਕਰਨਾ ਸਹਾਇਕ ਰਹਿੰਦਾ ਹੈ ਜੋ ਵਕਤ ਉੱਤੇ ਬ੍ਰਹਿਮੰਡ ਦੀ ਉੱਤਪੱਤੀ ਦਿਖਾਵੇ। ਇਹ ਕੁੱਝ “3+1” ਕਹੀਆਂ ਜਾਣ ਵਾਲੀਆਂ ਫਾਰਮੂਲਾ ਬਣਤਰਾਂ ਨਾਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜਿੱਥੇ ਸਪੇਸ ਨੂੰ ਤਿੰਨ ਸਪੇਸ ਡਾਇਮੈਨਸ਼ਨਾਂ ਵਿੱਚ ਅਲੱਗ ਕਰ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਟਾਈਮ ਨੂੰ ਇੱਕ ਡਾਇਮੈਨਸ਼ਨ ਵਿੱਚ ਅਲੱਗ ਕਰ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਸਭ ਤੋਂ ਚੰਗੀ ਤਰਾਂ ਜਾਣੀ ਜਾਣ ਵਾਲੀ ਉਦਾਹਰਨ ADM ਫਾਰਮੂਲਿਜ਼ਮ ਹੈ। ਇਹ ਵਿਯੋਜਨ (ਅਲੱਗ ਕਰਨ ਦਾ ਤਰੀਕਾ) ਦਿਖਾਉਂਦਾ ਹੈ ਕਿ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀਆਂ ਸਪੇਸਟਾਈਮ ਉਤਪੱਤੀ ਦੀਆਂ ਸਮੀਕਰਨਾਂ ਚੰਗੀ ਤਰਾਂ ਵਰਤਾਓ ਕਰਦੀਆਂ ਹਨ: ਇੱਕ ਵਾਰ ਢੁਕਵੀਆਂ (ਅਨੁਕੂਲ) ਸ਼ੁਰੂਆਤੀ ਸ਼ਰਤਾਂ ਦਰਸਾ ਦਿੱਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ, ਤਾਂ ਹੱਲ ਹਮੇਸ਼ਾਂ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ, ਅਤੇ ਨਿਰਾਲੇ ਤੌਰ ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਹੋਣ ਵਾਲੇ ਹੁੰਦੇ ਹਨ। ਆਈਨਸਟਾਈਨ ਫੀਲਡ ਇਕੁਏਸ਼ਨਾਂ ਦੇ ਅਜਿਜੇ ਹੱਲ ਨਿਊਮੈਰੀਕਲ (ਸੰਖਿਅਕ) ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਅਧਾਰ ਹਨ।
ਗਲੋਬਲ ਅਤੇ ਕੁਆਸੀ-ਲ਼ੋਕਲ (ਅਰਧ-ਸਥਾਨਿਕ) ਮਾਤਰਾਵਾਂ
ਸੋਧੋਉਤਪੱਤੀ ਸਮੀਕਰਨਾਂ ਦੀ ਧਾਰਨਾ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਇੱਕ ਹੋਰ ਪਹਿਲੂ ਨਾਲ ਚੰਗੀ ਤਰਾਂ ਜੁੜੀ ਹੋਈ ਹੈ। ਆਈਨਸਟਾਈਨ ਦੀ ਥਿਊਰੀ ਵਿੱਚ, ਕਿਸੇ ਸਰਲ ਦਿਸਣ ਵਾਲੀ ਵਿਸ਼ੇਸ਼ਤਾ ਜਿਵੇਂ ਕਿਸੇ ਸਿਸਟਮ ਦੇ ਕੁੱਲ ਮਾਸ (ਜਾਂ ਐਨਰਜੀ) ਲਈ ਇੱਕ ਜਨਰਲ ਪਰਿਭਾਸ਼ਾ ਖੋਜਣੀ ਅਸੰਭਵ ਰਿਹਾ ਹੈ। ਮੁੱਖ ਕਾਰਣ ਇਹ ਹੈ ਕਿ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਨੂੰ – ਕਿਸੇ ਵੀ ਭੌਤਿਕੀ ਫੀਲਡ ਦੀ ਤਰਾਂ- ਜਰੂਰ ਹੀ ਇੱਕ ਨਿਸ਼ਚਿਤ ਐਨਰਜੀ ਲਈ ਜਿਮੇਵਾਰ ਮੰਨੀ ਜਾਣੀ ਚਾਹੀਦੀ ਹੈ, ਪਰ ਇਹ ਮੁਢਲੇ ਤੌਰ ਤੇ ਓਸ ਐਨਰਜੀ ਨੂੰ ਸਥਾਨਿਕ ਤੌਰ ਤੇ ਸਥਿਰ ਕਰਨਾ ਅਸੰਭਵ ਸਾਬਤ ਹੋਇਆ ਹੈ।
ਇੰਨਾ ਹੀ ਬੱਸ ਨਹੀਂ, ਕਿਸੇ ਸਿਸਟਮ ਦੇ ਕੁੱਲ ਮਾਸ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ ਦੀਆਂ ਸੰਭਾਵਨਾਵਾਂ ਹੁੰਦੀਆਂ ਹਨ, ਚਾਹੇ ਕੋਈ ਮਿੱਥਿਆ “ਅਨੰਤ ਦੂਰ ਸਥਿਤ ਦਰਸ਼ਕ” (ADM ਮਾਸ) ਜਾਂ ਅਨੁਕੂਲ ਸਮਰੂਪਤਾਵਾਂ (ਕੋਮਰ ਮਾਸ)। ਜੇਕਰ ਕੋਈ ਸਿਸਟਮ ਤੋਂ ਕੁੱਲ ਮਾਸ ਨੂੰ ਬਾਹਰ ਕੱਢ ਦੇਵੇ, ਐਨਰਜੀ ਗਰੈਵੀਟੇਸ਼ਨਲ ਤਰੰਗਾਂ ਰਾਹੀਂ ਅਨੰਤ ਤੋਂ ਪਰੇ ਰੱਖ ਦੇਵੇ, ਤਾਂ ਨਤੀਜੇ ਵਜੋਂ ਨੱਲ-ਇਨਫਿਨਟੀ ਉੱਤੇ ਬੋਂਦੀ ਮਾਸ ਹੁੰਦਾ ਹੈ। ਜਿਵੇਂ ਕਲਾਸੀਕਲ ਫਿਜ਼ਿਕਸ ਵਿੱਚ ਹੁੰਦਾ ਹੈ, ਇਹ ਦਿਖਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਇਹ ਮਾਸ ਪੌਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਸਬੰਧਤ ਭੂਮੰਡਲੀ ਪਰਿਭਾਸ਼ਾਵਾਂ ਮੋਮੈਂਟਮ ਅਤੇ ਐਂਗੁਲਰ ਮੋਮੈਂਟਮ ਲਈ ਮੌਜੂਦ ਹਨ। ਕੁਆਸੀ-ਲੋਕਲ ਕੁਆਂਟਿਟੀਜ਼ (ਅਰਧ-ਸਥਾਨਿਕ ਮਾਤਰਾਵਾਂ) ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ ਦੀਆਂ ਬਹੁਤ ਸਾਰੀਆਂ ਕੋਸ਼ਿਸ਼ਾਂ ਰਹੀਆਂ ਹਨ, ਜਿਵੇਂ ਕਿਸੇ ਬੰਦ ਸਿਸਟਮ ਦੇ ਮਾਸ ਨੂੰ ਸਿਰਫ ਓਸ ਸਿਸਟਮ ਨੂੰ ਰੱਖਣ ਵਾਲੀ ਸਪੇਸ ਦੇ ਇੱਕ ਸੀਮਤ ਖੇਤਰ ਅੰਦਰ ਪਰਿਭਾਸ਼ਿਤ ਮਾਤਰਾਵਾਂ ਨੂੰ ਵਰਤਦੇ ਹੋਏ ਫਾਰਮੂਲਾਬੱਧ ਕੀਤਾ ਗਿਆ ਹੈ। ਉਮੀਦ ਅਜਿਹੀ ਮਾਤਰਾ ਪ੍ਰਾਪਤ ਕਰਨੀ ਰਹੀ ਹੈ ਜੋ ਬੰਦ ਸਿਸਟਮਾਂ ਬਾਰੇ ਆਮ ਕਥਨਾਂ ਲਈ ਸਹਾਇਕ ਹੋਵੇ, ਜਿਵੇਂ ਹੂਪ ਕੰਜਕਸਚਰ (ਅਨੁਮਾਨ) ਦਾ ਹੋਰ ਜਿਆਦਾ ਸ਼ੁੱਧ ਫਾਰਮੂਲਾਕਰਨ।
ਕੁਆਂਟਮ ਥਿਊਰੀ ਨਾਲ ਸਬੰਧ
ਸੋਧੋਜੇਕਰ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਨੂੰ ਅਜੋਕੀ ਭੌਤਿਕ ਵਿਗਿਆਨ ਦੇ ਦੋ ਥੰਮਾਂ ਵਿੱਚੋਂ ਇੱਕ ਥੰਮ ਦੇ ਰੂਪ ਵਿੱਚ ਮੰਨਿਆ ਜਾਵੇ, ਤਾਂ, ਕੁਆਂਟਮ ਥਿਊਰੀ, ਜੋ ਮੁਢਲੇ ਕਣਾਂ ਤੋਂ ਠੋਸ ਅਵਸਥਾ ਭੌਤਿਕ ਵਿਗਿਆਨ (ਸੌਲਿਡ ਸਟੇਟ ਫਿਜ਼ਿਕਸ) ਤੱਕ ਪਦਾਰਥ ਨੂੰ ਸਮਝਣ ਦਾ ਅਧਾਰ ਹੈ, ਦੂਜਾ ਥੰਮ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਫੇਰ ਵੀ, ਕੁਆਂਟਮ ਥਿਊਰੀ ਦਾ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਨਾਲ ਮੇਲ ਮਿਲਾਪ ਕਰਨਾ ਅਜੇ ਇੱਕ ਖੁੱਲਾ ਸਵਾਲ ਹੈ।
ਵਕਰਿਤ ਸਪੇਸਟਾਈਮ ਅੰਦਰ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ
ਸੋਧੋਆਮ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀਆਂ, ਜੋ ਅਜੋਕੀ ਮੁਢਲੀ ਕਣ ਭੌਤਿਕ ਵਿਗਿਆਨ (ਐਲੀਮੈਂਟਰੀ ਪਾਰਟੀਕਲ ਫਿਜ਼ਿਕਸ) ਦਾ ਅਧਾਰ ਰਚਦੀਆਂ ਹਨ, ਨੂੰ ਫਲੈਟ ਮਿੰਕੋਵਸਕੀ ਸਪੇਸ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜੋ ਕਿ ਇੱਕ ਸ਼ਾਨਦਾਰ ਨੇੜਤਾ (ਅਪਰੌਕਸੀਮੇਸ਼ਨ) ਹੈ ਜਦੋਂ ਧਰਤੀ ਉੱਤੇ ਪਾਈਆਂ ਜਾਣ ਵਾਲੀਆਂ ਫੀਲਡਾਂ ਵਰਗੀਆਂ ਕਮਜੋਰ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡਾਂ ਅੰਦਰ ਸੂਖਮ ਕਣਾਂ ਦੇ ਸੁਭਾਅ ਨੂੰ ਦਰਸਾਉਣ ਦੀ ਗੱਲ ਹੁੰਦੀ ਹੈ। ਜਿਹਨਾਂ ਪ੍ਰਸਥਿਤੀਆਂ ਵਿੱਚ ਗਰੈਵਿਟੀ ਇੰਨੀ ਸ਼ਕਤੀਸ਼ਾਲੀ ਹੁੰਦੀ ਹੈ ਕਿ ਪਦਾਰਥ (ਕੁਆਂਟਮ) ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਨ ਲਈ ਕਾਫੀ ਹੋਵੇ, ਪਰ ਅਪਣੇ ਆਪ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਨ (ਕੁਆਂਟੀਜ਼ੇਸ਼ਨ) ਦੀ ਜਰੂਰਤ ਜਿੰਨੀ ਸ਼ਕਤੀਸ਼ਾਲੀ ਨਾ ਹੋਵੇ, ਉਹਨਾਂ ਪ੍ਰਸਥਿਤੀਆਂ ਨੂੰ ਦਰਸਾਉਣ ਲਈ, ਭੌਤਿਕ ਵਿਗਿਆਨੀਆਂ ਨੇ ਵਕਰਿਤ ਸਪੇਸਟਾਈਮ ਅੰਦਰ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀਆਂ ਦੇ ਫਾਰਮੂਲੇ ਬਣਾਏ ਹਨ। ਇਹ ਥਿਊਰੀਆਂ ਕਿਸੇ ਕਰਵਡ ਬੈਕਗਰਾਊਂਡ ਸਪੇਸਟਾਈਮ ਨੂੰ ਦਰਸਾਉਣ ਲਈ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਤੇ ਨਿਰਭਰ ਕਰਦੀਆਂ ਹਨ, ਅਤੇ ਓਸ ਸਪੇਸਟਾਈਮ ਅੰਦਰ ਕੁਆਂਟਮ ਪਦਾਰਥ ਦੇ ਵਰਤਾਓ ਨੂੰ ਦਰਸਾਓਣ ਲਈ ਇੱਕ ਸਰਵ ਸਧਾਰਨ ਕੀਤੀ ਗਈ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦੀਆਂ ਹਨ। ਇਸ ਫਾਰਮੂਲਾ ਬਣਤਰ ਨੂੰ ਵਰਤਦੇ ਹੋਏ, ਇਹ ਦਿਖਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਬਲੈਕ ਹੋਲਾਂ “ਹਾਕਿੰਗ ਰੇਡੀਏਸ਼ਨਾਂ” ਦੇ ਨਾਲ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਕਣਾਂ ਦਾ ਇੱਕ ਬਲੈਕਬੌਡੀ ਸਪੈਕਟਰਮ ਬਾਹਰ ਕੱਢਦੀਆਂ ਹਨ, ਜੋ ਇਸ ਸੰਭਾਵਨਾ ਦੀ ਅਗਵਾਈ ਕਰਦਾ ਹੈ ਕਿ ਓਹ ਵਕਤ ਪਾ ਕੇ ਵਾਸ਼ਪਿਤ (ਇਵੈਪੋਰੇਟ) ਹੋ ਜਾਂਦੀਆਂ ਹਨ। ਜਿਵੇਂ ਉੱਪਰ ਸੰਖੇਪ ਰੂਪ ਵਿੱਚ ਦੱਸਿਆ ਗਿਆ ਹੈ, ਇਹ ਰੇਡੀਏਸ਼ਨ ਬਲੈਕ ਹੋਲਾਂ ਦੇ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਲਈ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦੀਆਂ ਹਨ।
ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ
ਸੋਧੋਪਦਾਰਥ ਦੇ ਇੱਕ ਕੁਆਂਟਮ ਵਿਵਰਣ ਅਤੇ ਸਪੇਸਟਾਈਮ ਦੇ ਇੱਕ ਜੀਓਮੈਟ੍ਰਿਕ ਵਿਵਰਣ ਦਰਮਿਆਨ ਸਥਿਰਤਾ ਲਈ ਮੰਗ, ਅਤੇ ਸਿੰਗੂਲਰਟੀਆਂ (ਜਿੱਥੇ ਕਰਵੇਚਰ ਲੰਬਾਈ ਪੈਮਾਨੇ ਸੂਖਮ ਬਣ ਜਾਂਦੇ ਹਨ) ਦੀ ਸਥਿਰਤਾ ਲਈ ਮੰਗ, ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਦੀ ਇੱਕ ਸੰਪੂਰਣ ਥਿਊਰੀ ਲਈ ਜਰੂਰਤ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦੀ ਹੈ: ਬਲੈਕ ਹੋਲਾਂ ਦੇ ਅੰਦਰੂਨੀ ਭਾਗ ਦੇ ਕਿਸੇ ਜਰੂਰਤ ਜਿੰਨੇ ਵਿਵਰਣ ਲਈ, ਅਤੇ ਬਹੁਤ ਸ਼ੁਰੂਆਤੀ ਬ੍ਰਹਿਮੰਡ ਦੇ ਵਿਵਰਣ ਲਈ, ਇੱਕ ਥਿਊਰੀ ਦੀ ਜਰੂਰਤ ਹੈ ਜਿਸ ਵਿੱਚ ਗਰੈਵਿਟੀ ਅਤੇ ਨਾਲ ਜੁੜੀ ਸਪੇਸਟਾਈਮ ਦੀ ਜੀਓਮੈਟਰੀ ਨੂੰ ਕੁਆਂਟਮ ਫਿਜ਼ਿਕਸ ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ ਲਿਖਿਆ ਜਾ ਸਕੇ। ਵੱਡੇ ਯਤਨਾਂ ਦੇ ਬਾਵਜੂਦ, ਕੋਈ ਵੀ ਸੰਪੂਰਣ ਅਤੇ ਸਥਿਰ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਦੀ ਥਿਊਰੀ ਅਜੇ ਤੱਕ ਜਾਣੀ ਨਹੀਂ ਗਈ, ਭਾਵੇਂ ਬਹੁਤ ਸਾਰੇ ਹੋਣਹਾਰ ਉਮੀਦਵਾਰ ਮੌਜੂਦ ਹਨ।
ਮੁਢਲੀਆਂ ਇੰਟਰੈਕਸ਼ਨਾਂ ਨੂੰ ਦਰਸਾਉਣ ਲਈ ਮੁਢਲੀ ਕਣ ਭੌਤਿਕ ਵਿਗਿਆਨ ਵਿੱਚ ਵਰਤੀਆਂ ਗਈਆਂ ਸਧਾਰਣ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀਆਂ ਨੂੰ ਜਨਰਲਾਈਜ਼ ਕਰਨ ਦੀਆਂ ਕੋਸ਼ਿਸ਼ਾਂ ਵਿੱਚ ਗਰੈਵਿਟੀ ਨੂੰ ਸ਼ਾਮਿਲ ਕਰਨ ਨੇ ਗੰਭੀਰ ਸਮੱਸਿਆਵਾਂ ਨੂੰ ਜਨਮ ਦਿੱਤਾ ਹੈ। ਨਿਮਰ ਉਰਜਾਵਾਂ (ਲੋਅ-ਐਨਰਜੀਆਂ) ਉੱਤੇ ਇਹ ਪ੍ਰਾਪਤੀ ਸਫਲ ਸਾਬਤ ਹੋਈ ਹੈ, ਓਸ ਵਿੱਚ ਇਹ ਗਰੈਵਿਟੀ ਦੀ ਇੱਕ ਸਵੀਕਾਰ ਕੀਤੀ ਜਾਣ ਯੋਗ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਨਤੀਜੇ ਵਜੋਂ ਦਿੰਦੀ ਹੈ। ਬਹੁਤ ਉੱਚ ਊਰਜਾਵਾਂ ਉੱਤੇ, ਕੁੱਝ ਨਾ ਕੁੱਝ, ਨਤੀਜੇ ਸਾਰੀ ਦੀ ਸਾਰੀ ਭਵਿੱਖਬਾਣੀ ਕਰਨ ਦੀ ਤਾਕਤ ਤੋਂ ਨਿਰਾਧਾਰ ਮਾਡਲਾਂ ਵਾਲੇ ਰਹੇ ਹਨ।
ਇਹਨਾਂ ਕਮੀਆਂ ਤੋਂ ਛੁਟਕਾਰਾ ਪਾਉਣ ਦਾ ਇੱਕ ਯਤਨ ਸਟਰਿੰਗ ਥਿਊਰੀ ਹੈ, ਜੋ ਬਿੰਦੂ-ਕਣਾਂ (ਪੋਆਇੰਟ ਪਾਰਟੀਕਲਾਂ) ਦੀ ਥਿਊਰੀ ਨਹੀਂ ਹੈ, ਸਗੋਂ ਸੂਖਮ ਇੱਕ-ਅਯਾਮੀ ਫੈਲਾਏ ਹੋਈਆਂ ਚੀਜ਼ਾਂ ਹਨ। ਇਹ ਥਿਊਰੀ ਸਾਰੇ ਕਣਾਂ ਅਤੇ ਗਰੈਵਿਟੀ ਸਮੇਤ ਸਾਰੀਆਂ ਕ੍ਰਿਆਵਾਂ ਦਾ ਇੱਕ ਯੂਨੀਫਾਈਡ (ਇਕੱਠਾ ਕੀਤਾ ਹੋਇਆ) ਵਿਵਰਣ ਹੋਣ ਦਾ ਵਾਅਦਾ ਕਰਦੀ ਹੈ; ਕੀਮਤ ਜੋ ਦੇਣੀ ਪੈਂਦੀ ਹੈ ਉਹ ਹੈ ਆਮ ਤਿੰਨ ਦੇ ਜੋੜ ਵਿੱਚ ਸਪੇਸ ਦੀਆਂ ਹੋਰ ਛੇ ਵਾਧੂ ਡਾਇਮੈਨਸ਼ਨਾਂ ਵਰਗੇ ਅਜੀਬ ਲੱਛਣ। ਜਿਸ ਨੂੰ ਦੂਜਾ ਸੁਪਰਸਟਰਿੰਗ ਇੰਨਕਲਾਬ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਉਸ ਵਿੱਚ, ਇਹ ਅਨੁਮਾਨ ਲਗਾਇਆ ਗਿਆ ਸੀ ਕਿ, ਸਟਰਿੰਗ ਥਿਊਰੀ ਅਤੇ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਤੇ ਸੁਪਰਸਮਿੱਟਰੀ ਦੀ ਯੂਨੀਫੀਕੇਸ਼ਨ ਜਿਸਨੂੰ ਸੁਪਰਗਰੈਵਿਟੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਦੋਵੇਂ, M-ਥਿਊਰੀ ਦੇ ਨਾਮ ਨਾਲ ਜਾਣੇ ਜਾਣ ਵਾਲੇ ਇੱਕ ਮਿੱਥ ਗਿਆਰਾਂ ਅਯਾਮੀ ਮਾਡਲ ਦਾ ਹਿੱਸਾ ਰਚਦੀਆਂ ਹਨ, ਜੋ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਦੀ ਇੱਕ ਨਿਰਾਲੀ ਪਰਿਭਾਸ਼ਿਤ ਅਤੇ ਸਥਿਰ ਥਿਊਰੀ ਰਚ ਸਕਣਗੀਆਂ।
ਇੱਕ ਹੋਰ ਪ੍ਰਾਪਤੀ (ਅਪਰੋਚ) ਕੁਆਂਟਮ ਥਿਊਰੀ ਦੇ ਕਾਨਿਨੀਕਲ ਕੁਆਂਟੀਜ਼ੇਸ਼ਨ ਕਾਰਜ ਵਿਧੀਆਂ ਨਾਲ ਸ਼ੁਰੂ ਹੁੰਦੀ ਹੈ। ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਸ਼ੁਰੂਆਤੀ-ਮੁੱਲ-ਫਾਰਮੂਲਾ ਬਣਤਰ ਵਰਤਦੇ ਹੋਏ, ਨਤੀਜੇ ਵਜੋਂ ਵੀਲਰ-ਡਿਵਿੱਟ ਇਕੁਏਸ਼ਨ (ਸ਼੍ਰੋਡਿੰਜਰ ਇਕੁਏਸ਼ਨ ਦੇ ਸਮਾਨ ਇੱਕ ਸਮੀਕਰਨ) ਮਿਲਦੀ ਹੈ ਜੋ, ਬਦਕਿਸਮਤੀ ਨਾਲ, ਪਰਿਭਾਸ਼ਿਤ ਹੋਣ ਯੋਗ ਨਾ ਨਿਕਲ ਸਕੀ। ਫੇਰ ਵੀ, ਅੱਜਕੱਲ ਅਸ਼ਟੇਕਰ ਵੇਰੀਏਬਲਾਂ (ਅਸਥਿਰਾਂਕਾਂ) ਦੇ ਨਾਮ ਨਾਲ ਜਾਣੇ ਜਾਂਦੇ ਅਸਥਿਰ ਅੰਕਾਂ ਦੀ ਜਾਣ ਪਛਾਣ ਨਾਲ, ਇਸਨੇ ਲੂਪ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਦੇ ਨਾਮ ਨਾਲ ਜਾਣੇ ਜਾਣ ਵਾਲੇ ਇੱਕ ਭਰੋਸੇ ਯੋਗ ਮਾਡਲ ਵੱਲ ਪ੍ਰੇਰਣਾ ਦਿੱਤੀ। ਸਪੇਸ ਨੂੰ ਇੱਕ ਸਪਿੱਨ-ਨੈੱਟਵਰਕ ਕਹੀ ਜਾਣ ਵਾਲੀ ਜਾਲ-ਨੁਮਾ ਬਣਤਰ ਨਾਲ ਪ੍ਰਸਤੁਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜੋ ਵਕਤ ਅੰਦਰ ਡਿਸਕਰੀਟ (ਅਨਿਰੰਤਰ) ਸਟੈੱਪਾਂ (ਛੜੱਪਿਆਂ) ਵਿੱਚ ਉਤਪੰਨ ਹੁੰਦੀ ਹੈ।
ਇਸ ਗੱਲ ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹੋਏ ਕਿ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਅਤੇ ਕੁਆਂਟਮ ਥਿਊਰੀ ਦੇ ਕਿਹੜੇ ਲੱਛਣ ਸਵੀਕਾਰ ਕਰਨ ਤੋਂ ਬਾਦ ਬਦਲਦੇ ਨਹੀਂ, ਅਤੇ ਕਿਹੜੇ ਪੱਧਰ ਉੱਤੇ ਤਬਦੀਲੀਆਂ ਪੇਸ਼ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ, ਕੁਆਂਟਮ ਥਿਊਰੀ ਦੀ ਇੱਕ ਪ੍ਰੈਕਟੀਕਲ (ਵਿਵਹਾਰਿਕ) ਥਿਊਰੀ ਉੱਤੇ ਪਹੁੰਚਣ ਲਈ ਹੋਰ ਬਹੁਤ ਸਾਰੇ ਯਤਨ ਹੋਏ ਹਨ, ਜਿਹਨਾਂ ਵਿੱਚੋਂ ਕੁੱਝ ਉਦਾਹਰਨਾਂ ਇਹ ਹਨ; ਡਾਇਨੈਮਿਕਲ ਟਰੈਂਗੁਲੇਸ਼ਨ, ਕੈਜ਼ੀਊਲ ਸੈੱਟਸ, ਟਵਿਸਟਰ ਮਾਡਲਜ਼ ਜਾਂ ਕੁਆਂਟਮ ਕੌਸਮੌਲਜੀ ਦੇ ਮਾਡਲਾਂ ਉੱਤੇ ਅਧਾਰਿਤ ਪਾਥ-ਇੰਟਗਰਲ।
ਸਾਰੀਆਂ ਉਮੀਦਵਾਰ ਥਿਊਰੀਆਂ ਵਿੱਚ ਅਜੇ ਪ੍ਰਮੁੱਖ ਰਸਮੀ ਅਤੇ ਸੰਕਲਿਪ ਸਮੱਸਿਆਵਾਂ ਨਜਿੱਠਣ ਲਈ ਬਾਕੀ ਹਨ। ਇਹ ਇਸ ਆਮ ਸਮੱਸਿਆ ਦਾ ਸਾਹਮਣਾ ਵੀ ਕਰਦੀਆਂ ਹਨ ਕਿ, ਅਜੇ ਤੱਕ, ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਅਨੁਮਾਨਾਂ ਨੂੰ ਪ੍ਰਯੋਗਿਕ ਪਰਖਾਂ ਵਿੱਚ ਰੱਖਣ ਦਾ ਕੋਈ ਤਰੀਕਾ ਵੀ ਨਹੀਂ ਹੈ (ਅਤੇ ਤਾਂ ਜੋ ਇਹ ਫੈਸਲਾ ਕੀਤਾ ਜਾ ਸਕੇ ਕਿ ਉਮੀਦਵਾਰਾਂ ਦਰਮਿਆਨ ਉਹਨਾਂ ਦੇ ਅਨੁਮਾਨ ਕਿੰਨੇ ਕੁ ਸਫਲ ਰਹਿੰਦੇ ਹਨ), ਬੇਸ਼ੱਕ ਬ੍ਰਹਿਮੰਡੀ ਨਿਰੀਖਣਾਂ ਅਤੇ ਕਣ ਭੌਤਿਕ ਵਿਗਿਆਨ ਪ੍ਰਯੋਗਾਂ ਦੇ ਉਪਲਬਧ ਹੋਣ ਤੋਂ ਭਵਿੱਖ ਆਂਕੜਿਆਂ ਦੇ ਬਦਲ ਜਾਣ ਦੀ ਉਮੀਦ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।
ਤਾਜ਼ਾ ਹਾਲਤ
ਸੋਧੋਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਗਰੈਵੀਟੇਸ਼ਨ ਅਤੇ ਬ੍ਰਹਿਮੰਡ ਵਿਗਿਆਨ ਦੇ ਉੱਚ ਸਫਲਤਾ ਵਾਲੇ ਮਾਡਲਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਉੱਭਰੀ ਹੈ, ਜਿਸਨੇ ਹੁਣ ਤੱਕ ਬਹੁਤ ਸਾਰੇ ਸਪੱਸ਼ਟ ਨਿਰੀਖਣ ਅਤੇ ਪ੍ਰਯੋਗਿਕ ਟੈਸਟਾਂ ਨੂੰ ਪਾਸ ਕੀਤਾ ਹੈ। ਫੇਰ ਵੀ, ਇਹ ਸ਼ਕਤੀਸ਼ਾਲੀ ਇਸ਼ਾਰੇ ਹਨ ਕਿ ਥਿਊਰੀ ਅਧੂਰੀ ਹੈ। ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਦੀ ਸਮੱਸਿਆ ਅਤੇ ਸਪੇਸਟਾਈਮ ਸਿੰਗੂਲਰਟੀਆਂ ਦੀ ਵਾਸਤਵਿਕਤਾ ਦਾ ਸਵਾਲ ਖੁੱਲਾ ਪਿਆ ਰਿਹਾ ਹੈ। ਨਿਰੀਖਣ ਆਂਕੜੇ ਜੋ ਡਾਰਕ ਐਨਰਜੀ ਅਤੇ ਡਾਰਕ ਮੈਟਰ ਦੀ ਗਵਾਹੀ ਦੇ ਰੂਪ ਵਿੱਚ ਲਏ ਗਏ ਹਨ, ਇਸ਼ਾਰਾ ਕਰ ਸਕਦੇ ਹਨ ਕਿ ਨਵੀਂ ਭੌਤਿਕ ਵਿਗਿਆਨ ਦੀ ਜਰੂਰਤ ਹੈ। ਇੱਥੋਂ ਤੱਕ ਕਿ ਇਸੇ ਤਰਾਂ ਜਿਵੇਂ ਹੈ, ਉਸੇ ਤਰਾਂ ਲੈਣ ਨਾਲ, ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਹੋਰ ਫਰੋਲਾ ਫਰਾਲੀ ਦੀਆਂ ਸੰਭਾਵਨਾਵਾਂ ਨਾਲ ਅਮੀਰ ਹੈ। ਗਣਿਤਕ ਰੀਲੇਟੀਵਿਸਟਸ (ਸਾਪੇਖ ਸ਼ਾਸਤਰੀ) ਸਿੰਗੂਲਰਟੀਆਂ ਦੀ ਫਿਤਰਤ ਨੂੰ ਸਮਝਣਾ ਸਿੱਖਦੇ ਹਨ ਅਤੇ ਆਈਨਸਟਾਈਨ ਦੀਆਂ ਸਮੀਕਰਨਾਂ ਦੀਆਂ ਮੁਢਲੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਨੂੰ ਸਮਝਣਾ ਸਿੱਖਦੇ ਹਨ, ਅਤੇ ਤੇਜ਼ੀ ਨਾਲ ਵਧ ਰਹੀਆਂ ਤਾਕਤਵਰ ਕੰਪਿਊਟਰ ਬਣਾਵਟਾਂ (ਜਿਵੇਂ ਬਲੈਕ ਹੋਲਾਂ ਦੇ ਇਕੱਠੇ ਹੋਣ ਨੂੰ ਦਰਸਾਉਣ ਵਾਲੀਆਂ ਬਣਾਵਟਾਂ) ਦੌੜਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਹੁਣ ਤੱਕ ਸੰਭਵ ਰਹੀਆਂ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡਾਂ ਨਾਲੋਂ ਹੋਰ ਸ਼ਕਤੀਸ਼ਾਲੀ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡਾਂ ਲਈ ਥਿਊਰੀ ਦੀ ਪ੍ਰਮਾਣਿਕਤਾ ਦੀ ਪਰਖ ਲਈ ਮੌਕੇ ਬਣਾਏ ਜਾਣ ਦੀ ਉਮੀਦ ਨਾਲ ਗਰੈਵੀਟੇਸ਼ਨਲ ਤਰੰਗਾਂ ਦੀ ਪਹਿਲੀ ਸਿੱਧੀ ਡਿਟੈਕਸ਼ਨ (ਪਛਾਣ) ਲਈ ਦੌੜ ਜਾਰੀ ਹੈ। ਅਪਣੀ ਪਬਲੀਕੇਸ਼ਨ ਦੇ ਤਕਰੀਬਨ ਸੌ ਸਾਲ ਬਾਦ ਵੀ, ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਰਿਸਰਚ ਦਾ ਉੱਚ ਕ੍ਰਿਆਸ਼ੀਲ ਖੇਤਰ ਰਿਹਾ ਹੈ।
ਇਹ ਵੀ ਦੇਖੋ
ਸੋਧੋ- ਅਲਕੁਬਿਰੇ ਡਰਾਈਵ (ਰੈਪ ਡਰਾਈਵ)
- ਪੁੰਜ ਦਾ ਕੇਂਦਰ (ਸਾਪੇਖਾਤਮਿਕ)
- ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਪ੍ਰਤੋ ਯੋਗਦਾਨ
- ਲੌਰੰਟਜ਼ ਪਰਿਵਰਤਨਾਂ ਦੀ ਵਿਓਂਤਬੰਦੀ
- ਐਹਰਨਫੈਸਟ ਪੈਰਾਡੌਕਸ
- ਆਈਨਸਟਾਈਨ-ਹਿਲਬਰਟ ਐਕਸ਼ਨ
- ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਗਣਿਤ ਨਾਲ ਜਾਣ-ਪਛਾਣ
- ਰਿਲੇਟੀਵਿਟੀ ਤਰਜੀਹ ਵਿਵਾਦ
- ਰਿਚੀ ਕੈਲਕੁਲਸ
- ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀਆਂ ਪਰਖਾਂ
- ਗਰੈਵੀਟੇਸ਼ਨਲ ਭੌਤਿਕ ਵਿਗਿਆਨ ਅਤੇ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਸਮਾਂ-ਰੇਖਾ
- ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ ਦੋ-ਸ਼ਰੀਰ ਸਮੱਸਿਆ
- ਕਮਜੋਰ ਗਰੈਵਿਟੀ ਅਨੁਮਾਨ
ਨੋਟਸ
ਸੋਧੋਹਵਾਲੇ
ਸੋਧੋ- Alpher, R. A.; Herman, R. C. (1948), "Evolution of the universe", Nature, 162 (4124): 774–775, Bibcode:1948Natur.162..774A, doi:10.1038/162774b0
- Anderson, J. D.; Campbell, J. K.; Jurgens, R. F.; Lau, E. L. (1992), "Recent developments in solar-system tests of general relativity", in Sato, H.; Nakamura, T. (eds.), Proceedings of the Sixth Marcel Großmann Meeting on General Relativity, World Scientific, pp. 353–355, ISBN 981-02-0950-9
- Arnold, V. I. (1989), Mathematical Methods of Classical Mechanics, Springer, ISBN 3-540-96890-3
- Arnowitt, Richard; Deser, Stanley; Misner, Charles W. (1962), "The dynamics of general relativity", in Witten, Louis (ed.), Gravitation: An Introduction to Current Research, Wiley, pp. 227–265
- Arun, K.G.; Blanchet, L.; Iyer, B. R.; Qusailah, M. S. S. (2007), "Inspiralling compact binaries in quasi-elliptical orbits: The complete 3PN energy flux", Physical Review D, 77 (6), arXiv:0711.0302, Bibcode:2008PhRvD..77f4035A, doi:10.1103/PhysRevD.77.064035
- Ashby, Neil (2002), "Relativity and the Global Positioning System" (PDF), Physics Today, 55 (5): 41–47, Bibcode:2002PhT....55e..41A, doi:10.1063/1.1485583
- Ashby, Neil (2003), "Relativity in the Global Positioning System", Living Reviews in Relativity, 6, doi:10.12942/lrr-2003-1, archived from the original on 2007-07-04, retrieved 2007-07-06
- Ashtekar, Abhay (1986), "New variables for classical and quantum gravity", Phys. Rev. Lett., 57 (18): 2244–2247, Bibcode:1986PhRvL..57.2244A, doi:10.1103/PhysRevLett.57.2244, PMID 10033673
- Ashtekar, Abhay (1987), "New Hamiltonian formulation of general relativity", Phys. Rev., D36 (6): 1587–1602, Bibcode:1987PhRvD..36.1587A, doi:10.1103/PhysRevD.36.1587
- Ashtekar, Abhay (2007), "LOOP QUANTUM GRAVITY: FOUR RECENT ADVANCES AND A DOZEN FREQUENTLY ASKED QUESTIONS", The Eleventh Marcel Grossmann Meeting - on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories - Proceedings of the MG11 Meeting on General Relativity, p. 126, arXiv:0705.2222, Bibcode:2008mgm..conf..126A, doi:10.1142/9789812834300_0008, ISBN 9789812834263
- Ashtekar, Abhay; Krishnan, Badri (2004), "Isolated and Dynamical Horizons and Their Applications", Living Reviews in Relativity, 7, arXiv:gr-qc/0407042, Bibcode:2004LRR.....7...10A, doi:10.12942/lrr-2004-10, retrieved 2007-08-28
- Ashtekar, Abhay; Lewandowski, Jerzy (2004), "Background Independent Quantum Gravity: A Status Report", Class. Quant. Grav., 21 (15): R53–R152, arXiv:gr-qc/0404018, Bibcode:2004CQGra..21R..53A, doi:10.1088/0264-9381/21/15/R01
- Ashtekar, Abhay; Magnon-Ashtekar, Anne (1979), "On conserved quantities in general relativity", Journal of Mathematical Physics, 20 (5): 793–800, Bibcode:1979JMP....20..793A, doi:10.1063/1.524151
- Auyang, Sunny Y. (1995), How is Quantum Field Theory Possible?, Oxford University Press, ISBN 0-19-509345-3
- Bania, T. M.; Rood, R. T.; Balser, D. S. (2002), "The cosmological density of baryons from observations of 3He+ in the Milky Way", Nature, 415 (6867): 54–57, Bibcode:2002Natur.415...54B, doi:10.1038/415054a, PMID 11780112
- Barack, Leor; Cutler, Curt (2004), "LISA Capture Sources: Approximate Waveforms, Signal-to-Noise Ratios, and Parameter Estimation Accuracy", Phys. Rev., D69 (8): 082005, arXiv:gr-qc/0310125, Bibcode:2004PhRvD..69h2005B, doi:10.1103/PhysRevD.69.082005
- Bardeen, J. M.; Carter, B.; Hawking, S. W. (1973), "The Four Laws of Black Hole Mechanics", Comm. Math. Phys., 31 (2): 161–170, Bibcode:1973CMaPh..31..161B, doi:10.1007/BF01645742
- Barish, Barry (2005), "Towards detection of gravitational waves", in Florides, P.; Nolan, B.; Ottewil, A. (eds.), General Relativity and Gravitation. Proceedings of the 17th International Conference, World Scientific, pp. 24–34, ISBN 981-256-424-1
- Barstow, M; Bond, Howard E.; Holberg, J. B.; Burleigh, M. R.; Hubeny, I.; Koester, D. (2005), "Hubble Space Telescope Spectroscopy of the Balmer lines in Sirius B", Mon. Not. Roy. Astron. Soc., 362 (4): 1134–1142, arXiv:astro-ph/0506600, Bibcode:2005MNRAS.362.1134B, doi:10.1111/j.1365-2966.2005.09359.x
- Bartusiak, Marcia (2000), Einstein's Unfinished Symphony: Listening to the Sounds of Space-Time, Berkley, ISBN 978-0-425-18620-6
- Begelman, Mitchell C.; Blandford, Roger D.; Rees, Martin J. (1984), "Theory of extragalactic radio sources", Rev. Mod. Phys., 56 (2): 255–351, Bibcode:1984RvMP...56..255B, doi:10.1103/RevModPhys.56.255
- Beig, Robert; Chruściel, Piotr T. (2006), "Stationary black holes", in Françoise, J.-P.; Naber, G.; Tsou, T.S. (eds.), Encyclopedia of Mathematical Physics, Volume 2, Elsevier, p. 2041, arXiv:gr-qc/0502041, Bibcode:2005gr.qc.....2041B, ISBN 0-12-512660-3
- Bekenstein, Jacob D. (1973), "Black Holes and Entropy", Phys. Rev., D7 (8): 2333–2346, Bibcode:1973PhRvD...7.2333B, doi:10.1103/PhysRevD.7.2333
- Bekenstein, Jacob D. (1974), "Generalized Second Law of Thermodynamics in Black-Hole Physics", Phys. Rev., D9 (12): 3292–3300, Bibcode:1974PhRvD...9.3292B, doi:10.1103/PhysRevD.9.3292
- Belinskii, V. A.; Khalatnikov, I. M.; Lifschitz, E. M. (1971), "Oscillatory approach to the singular point in relativistic cosmology", Advances in Physics, 19 (80): 525–573, Bibcode:1970AdPhy..19..525B, doi:10.1080/00018737000101171; original paper in Russian: Belinsky, V. A.; Lifshits, I. M.; Khalatnikov, E. M. (1970), "Колебательный Режим Приближения К Особой Точке В Релятивистской Космологии", Uspekhi Fizicheskikh Nauk (Успехи Физических Наук), 102(3) (11): 463–500, Bibcode:1970UsFiN.102..463B
- Bennett, C. L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Page, L.; Spergel, D. N. (2003), "First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results", Astrophys. J. Suppl., 148 (1): 1–27, arXiv:astro-ph/0302207, Bibcode:2003ApJS..148....1B, doi:10.1086/377253
{{citation}}
: Unknown parameter|displayauthors=
ignored (|display-authors=
suggested) (help) - Berger, Beverly K. (2002), "Numerical Approaches to Spacetime Singularities", Living Reviews in Relativity, 5, arXiv:gr-qc/0201056, Bibcode:2002LRR.....5....1B, doi:10.12942/lrr-2002-1, retrieved 2007-08-04
- Bergström, Lars; Goobar, Ariel (2003), Cosmology and Particle Astrophysics (2nd ed.), Wiley & Sons, ISBN 3-540-43128-4
- Bertotti, Bruno; Ciufolini, Ignazio; Bender, Peter L. (1987), "New test of general relativity: Measurement of de Sitter geodetic precession rate for lunar perigee", Physical Review Letters, 58 (11): 1062–1065, Bibcode:1987PhRvL..58.1062B, doi:10.1103/PhysRevLett.58.1062, PMID 10034329
- Bertotti, Bruno; Iess, L.; Tortora, P. (2003), "A test of general relativity using radio links with the Cassini spacecraft", Nature, 425 (6956): 374–376, Bibcode:2003Natur.425..374B, doi:10.1038/nature01997, PMID 14508481
- Bertschinger, Edmund (1998), "Simulations of structure formation in the universe", Annu. Rev. Astron. Astrophys., 36 (1): 599–654, Bibcode:1998ARA&A..36..599B, doi:10.1146/annurev.astro.36.1.599
- Birrell, N. D.; Davies, P. C. (1984), Quantum Fields in Curved Space, Cambridge University Press, ISBN 0-521-27858-9
- Blair, David; McNamara, Geoff (1997), Ripples on a Cosmic Sea. The Search for Gravitational Waves, Perseus, ISBN 0-7382-0137-5
- Blanchet, L.; Faye, G.; Iyer, B. R.; Sinha, S. (2008), "The third post-Newtonian gravitational wave polarisations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits", Classical and Quantum Gravity, 25 (16): 165003, arXiv:0802.1249, Bibcode:2008CQGra..25p5003B, doi:10.1088/0264-9381/25/16/165003
- Blanchet, Luc (2006), "Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries", Living Reviews in Relativity, 9, Bibcode:2006LRR.....9....4B, doi:10.12942/lrr-2006-4, retrieved 2007-08-07
- Blandford, R. D. (1987), "Astrophysical Black Holes", in Hawking, Stephen W.; Israel, Werner (eds.), 300 Years of Gravitation, Cambridge University Press, pp. 277–329, ISBN 0-521-37976-8
- Börner, Gerhard (1993), The Early Universe. Facts and Fiction, Springer, ISBN 0-387-56729-1
- Brandenberger, Robert H. (2007), "Conceptual Problems of Inflationary Cosmology and a New Approach to Cosmological Structure Formation", Inflationary Cosmology, Lecture Notes in Physics, vol. 738, p. 393, arXiv:hep-th/0701111, Bibcode:2008LNP...738..393B, doi:10.1007/978-3-540-74353-8_11, ISBN 978-3-540-74352-1
- Brans, C. H.; Dicke, R. H. (1961), "Mach's Principle and a Relativistic Theory of Gravitation", Physical Review, 124 (3): 925–935, Bibcode:1961PhRv..124..925B, doi:10.1103/PhysRev.124.925
- Bridle, Sarah L.; Lahav, Ofer; Ostriker, Jeremiah P.; Steinhardt, Paul J. (2003), "Precision Cosmology? Not Just Yet", Science, 299 (5612): 1532–1533, arXiv:astro-ph/0303180, Bibcode:2003Sci...299.1532B, doi:10.1126/science.1082158, PMID 12624255
- Bruhat, Yvonne (1962), "The Cauchy Problem", in Witten, Louis (ed.), Gravitation: An Introduction to Current Research, Wiley, p. 130, ISBN 978-1-114-29166-9
- Buchert, Thomas (2007), "Dark Energy from Structure—A Status Report", General Relativity and Gravitation, 40 (2–3): 467–527, arXiv:0707.2153, Bibcode:2008GReGr..40..467B, doi:10.1007/s10714-007-0554-8
- Buras, R.; Rampp, M.; Janka, H.-Th.; Kifonidis, K. (2003), "Improved Models of Stellar Core Collapse and Still no Explosions: What is Missing?", Phys. Rev. Lett., 90 (24): 241101, arXiv:astro-ph/0303171, Bibcode:2003PhRvL..90x1101B, doi:10.1103/PhysRevLett.90.241101, PMID 12857181
- Caldwell, Robert R. (2004), "Dark Energy", Physics World, 17 (5): 37–42
- Carlip, Steven (2001), "Quantum Gravity: a Progress Report", Rept. Prog. Phys., 64 (8): 885–942, arXiv:gr-qc/0108040, Bibcode:2001RPPh...64..885C, doi:10.1088/0034-4885/64/8/301
- Carroll, Bradley W.; Ostlie, Dale A. (1996), An Introduction to Modern Astrophysics, Addison-Wesley, ISBN 0-201-54730-9
- Carroll, Sean M. (2001), "The Cosmological Constant", Living Reviews in Relativity, 4, arXiv:astro-ph/0004075, Bibcode:2001LRR.....4....1C, doi:10.12942/lrr-2001-1, retrieved 2007-07-21
- Carter, Brandon (1979), "The general theory of the mechanical, electromagnetic and thermodynamic properties of black holes", in Hawking, S. W.; Israel, W. (eds.), General Relativity, an Einstein Centenary Survey, Cambridge University Press, pp. 294–369 and 860–863, ISBN 0-521-29928-4
- Celotti, Annalisa; Miller, John C.; Sciama, Dennis W. (1999), "Astrophysical evidence for the existence of black holes", Class. Quant. Grav., 16 (12A): A3–A21, arXiv:astro-ph/9912186, doi:10.1088/0264-9381/16/12A/301
- Chandrasekhar, Subrahmanyan (1983), The Mathematical Theory of Black Holes, Oxford University Press, ISBN 0-19-850370-9
- Charbonnel, C.; Primas, F. (2005), "The Lithium Content of the Galactic Halo Stars", Astronomy & Astrophysics, 442 (3): 961–992, arXiv:astro-ph/0505247, Bibcode:2005A&A...442..961C, doi:10.1051/0004-6361:20042491
- Ciufolini, Ignazio; Pavlis, Erricos C. (2004), "A confirmation of the general relativistic prediction of the Lense-Thirring effect", Nature, 431 (7011): 958–960, Bibcode:2004Natur.431..958C, doi:10.1038/nature03007, PMID 15496915
- Ciufolini, Ignazio; Pavlis, Erricos C.; Peron, R. (2006), "Determination of frame-dragging using Earth gravity models from CHAMP and GRACE", New Astron., 11 (8): 527–550, Bibcode:2006NewA...11..527C, doi:10.1016/j.newast.2006.02.001
- Coc, A.; Vangioni‐Flam, Elisabeth; Descouvemont, Pierre; Adahchour, Abderrahim; Angulo, Carmen (2004), "Updated Big Bang Nucleosynthesis confronted to WMAP observations and to the Abundance of Light Elements", Astrophysical Journal, 600 (2): 544–552, arXiv:astro-ph/0309480, Bibcode:2004ApJ...600..544C, doi:10.1086/380121
- Cutler, Curt; Thorne, Kip S. (2002), "An overview of gravitational wave sources", in Bishop, Nigel; Maharaj, Sunil D. (eds.), Proceedings of 16th International Conference on General Relativity and Gravitation (GR16), World Scientific, p. 4090, arXiv:gr-qc/0204090, Bibcode:2002gr.qc.....4090C, ISBN 981-238-171-6
- Dalal, Neal; Holz, Daniel E.; Hughes, Scott A.; Jain, Bhuvnesh (2006), "Short GRB and binary black hole standard sirens as a probe of dark energy", Phys.Rev., D74 (6): 063006, arXiv:astro-ph/0601275, Bibcode:2006PhRvD..74f3006D, doi:10.1103/PhysRevD.74.063006
- Danzmann, Karsten; Rüdiger, Albrecht (2003), "LISA Technology—Concepts, Status, Prospects" (PDF), Class. Quant. Grav., 20 (10): S1–S9, Bibcode:2003CQGra..20S...1D, doi:10.1088/0264-9381/20/10/301, archived from the original (PDF) on 2007-09-26, retrieved 2016-07-11
- Dirac, Paul (1996), General Theory of Relativity, Princeton University Press, ISBN 0-691-01146-X
- Donoghue, John F. (1995), "Introduction to the Effective Field Theory Description of Gravity", in Cornet, Fernando (ed.), Effective Theories: Proceedings of the Advanced School, Almunecar, Spain, 26 June–1 July 1995, Singapore: World Scientific, p. 12024, arXiv:gr-qc/9512024, Bibcode:1995gr.qc....12024D, ISBN 981-02-2908-9
- Duff, Michael (1996), "M-Theory (the Theory Formerly Known as Strings)", Int. J. Mod. Phys., A11 (32): 5623–5641, arXiv:hep-th/9608117, Bibcode:1996IJMPA..11.5623D, doi:10.1142/S0217751X96002583
- Ehlers, Jürgen (1973), "Survey of general relativity theory", in Israel, Werner (ed.), Relativity, Astrophysics and Cosmology, D. Reidel, pp. 1–125, ISBN 90-277-0369-8
- Ehlers, Jürgen; Falco, Emilio E.; Schneider, Peter (1992), Gravitational lenses, Springer, ISBN 3-540-66506-4
- Ehlers, Jürgen; Lämmerzahl, Claus, eds. (2006), Special Relativity—Will it Survive the Next 101 Years?, Springer, ISBN 3-540-34522-1
- Ehlers, Jürgen; Rindler, Wolfgang (1997), "Local and Global Light Bending in Einstein's and other Gravitational Theories", General Relativity and Gravitation, 29 (4): 519–529, Bibcode:1997GReGr..29..519E, doi:10.1023/A:1018843001842
- Einstein, Albert (1907), "Über das Relativitätsprinzip und die aus demselben gezogene Folgerungen" (PDF), Jahrbuch der Radioaktivität und Elektronik, 4: 411, retrieved 2008-05-05
- Einstein, Albert (1915), "Die Feldgleichungen der Gravitation", Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin: 844–847, archived from the original on 2016-10-27, retrieved 2006-09-12
- Einstein, Albert (1916), "Die Grundlage der allgemeinen Relativitätstheorie", Annalen der Physik, 49: 769–822, Bibcode:1916AnP...354..769E, doi:10.1002/andp.19163540702, archived from the original (PDF) on 2006-08-29, retrieved 2016-02-14
- Einstein, Albert (1917), "Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie", Sitzungsberichte der Preußischen Akademie der Wissenschaften: 142
- Ellis, George F R; Van Elst, Henk (1999), Lachièze-Rey, Marc (ed.), "Theoretical and Observational Cosmology: Cosmological models (Cargèse lectures 1998)", Theoretical and observational cosmology : proceedings of the NATO Advanced Study Institute on Theoretical and Observational Cosmology, Kluwer: 1–116, arXiv:gr-qc/9812046, Bibcode:1999toc..conf....1E, doi:10.1007/978-94-011-4455-1_1, ISBN 978-0-7923-5946-3
- Everitt, C. W. F.; Buchman, S.; DeBra, D. B.; Keiser, G. M. (2001), "Gravity Probe B: Countdown to launch", in Lämmerzahl, C.; Everitt, C. W. F.; Hehl, F. W. (eds.), Gyros, Clocks, and Interferometers: Testing Relativistic Gravity in Space (Lecture Notes in Physics 562), Springer, pp. 52–82, ISBN 3-540-41236-0
- Everitt, C. W. F.; Parkinson, Bradford; Kahn, Bob (2007), The Gravity Probe B experiment. Post Flight Analysis—Final Report (Preface and Executive Summary) (PDF), Project Report: NASA, Stanford University and Lockheed Martin, retrieved 2007-08-05
- Falcke, Heino; Melia, Fulvio; Agol, Eric (2000), "Viewing the Shadow of the Black Hole at the Galactic Center", Astrophysical Journal, 528 (1): L13–L16, arXiv:astro-ph/9912263, Bibcode:2000ApJ...528L..13F, doi:10.1086/312423, PMID 10587484
- Flanagan, Éanna É.; Hughes, Scott A. (2005), "The basics of gravitational wave theory", New J.Phys., 7: 204, arXiv:gr-qc/0501041, Bibcode:2005NJPh....7..204F, doi:10.1088/1367-2630/7/1/204
- Font, José A. (2003), "Numerical Hydrodynamics in General Relativity", Living Reviews in Relativity, 6, doi:10.12942/lrr-2003-4, retrieved 2007-08-19
- Fourès-Bruhat, Yvonne (1952), "Théoréme d'existence pour certains systémes d'équations aux derivées partielles non linéaires", Acta Mathematica, 88 (1): 141–225, Bibcode:1952AcM....88..141F, doi:10.1007/BF02392131
- Frauendiener, Jörg (2004), "Conformal Infinity", Living Reviews in Relativity, 7, Bibcode:2004LRR.....7....1F, doi:10.12942/lrr-2004-1, retrieved 2007-07-21
- Friedrich, Helmut (2005), "Is general relativity 'essentially understood'?", Annalen der Physik, 15 (1–2): 84–108, arXiv:gr-qc/0508016, Bibcode:2006AnP...518...84F, doi:10.1002/andp.200510173
- Futamase, T.; Itoh, Y. (2006), "The Post-Newtonian Approximation for Relativistic Compact Binaries", Living Reviews in Relativity, 10, doi:10.12942/lrr-2007-2, retrieved 2008-02-29
- Gamow, George (1970), My World Line, Viking Press, ISBN 0-670-50376-2
- Garfinkle, David (2007), "Of singularities and breadmaking", Einstein Online, archived from the original on 2007-08-10, retrieved 2007-08-03
- Geroch, Robert (1996). "Partial Differential Equations of Physics". arXiv:gr-qc/9602055.
{{cite arXiv}}
:|class=
ignored (help); Invalid|ref=harv
(help) - Giulini, Domenico (2005), Special Relativity: A First Encounter, Oxford University Press, ISBN 0-19-856746-4
- Giulini, Domenico (2006a), "Algebraic and Geometric Structures in Special Relativity", in Ehlers, Jürgen; Lämmerzahl, Claus (eds.), Special Relativity—Will it Survive the Next 101 Years?, Springer, pp. 45–111, arXiv:math-ph/0602018, Bibcode:2006math.ph...2018G, ISBN 3-540-34522-1
- Giulini, Domenico (2006b), Stamatescu, I. O. (ed.), "An assessment of current paradigms in the physics of fundamental interactions: Some remarks on the notions of general covariance and background independence", Approaches to Fundamental Physics, Lecture Notes in Physics, 721, Springer: 105, arXiv:gr-qc/0603087, Bibcode:2007LNP...721..105G, doi:10.1007/978-3-540-71117-9_6, ISBN 978-3-540-71115-5
- Gnedin, Nickolay Y. (2005), "Digitizing the Universe", Nature, 435 (7042): 572–573, Bibcode:2005Natur.435..572G, doi:10.1038/435572a, PMID 15931201
- Goenner, Hubert F. M. (2004), "On the History of Unified Field Theories", Living Reviews in Relativity, 7, Bibcode:2004LRR.....7....2G, doi:10.12942/lrr-2004-2, retrieved 2008-02-28
- Goroff, Marc H.; Sagnotti, Augusto (1985), "Quantum gravity at two loops", Phys. Lett., 160B (1–3): 81–86, Bibcode:1985PhLB..160...81G, doi:10.1016/0370-2693(85)91470-4
- Gourgoulhon, Eric (2007). "3+1 Formalism and Bases of Numerical Relativity". arXiv:gr-qc/0703035.
{{cite arXiv}}
:|class=
ignored (help); Invalid|ref=harv
(help) - Gowdy, Robert H. (1971), "Gravitational Waves in Closed Universes", Phys. Rev. Lett., 27 (12): 826–829, Bibcode:1971PhRvL..27..826G, doi:10.1103/PhysRevLett.27.826
- Gowdy, Robert H. (1974), "Vacuum spacetimes with two-parameter spacelike isometry groups and compact invariant hypersurfaces: Topologies and boundary conditions", Annals of Physics, 83 (1): 203–241, Bibcode:1974AnPhy..83..203G, doi:10.1016/0003-4916(74)90384-4
- Green, M. B.; Schwarz, J. H.; Witten, E. (1987), Superstring theory. Volume 1: Introduction, Cambridge University Press, ISBN 0-521-35752-7
- Greenstein, J. L.; Oke, J. B.; Shipman, H. L. (1971), "Effective Temperature, Radius, and Gravitational Redshift of Sirius B", Astrophysical Journal, 169: 563, Bibcode:1971ApJ...169..563G, doi:10.1086/151174
- Hamber, Herbert W. (2009), Quantum Gravitation - The Feynman Path Integral Approach, Springer Publishing, doi:10.1007/978-3-540-85293-3, ISBN 978-3-540-85292-6
- Lua error in ਮੌਡਿਊਲ:Citation/CS1 at line 3162: attempt to call field 'year_check' (a nil value).
- Hafele, J. C.; Keating, R. E. (July 14, 1972). "Around-the-World Atomic Clocks: Predicted Relativistic Time Gains". Science. 177 (4044): 166–168. Bibcode:1972Sci...177..166H. doi:10.1126/science.177.4044.166. PMID 17779917.
- Hafele, J. C.; Keating, R. E. (July 14, 1972). "Around-the-World Atomic Clocks: Observed Relativistic Time Gains". Science. 177 (4044): 168–170. Bibcode:1972Sci...177..168H. doi:10.1126/science.177.4044.168. PMID 17779918.
- Havas, P. (1964), "Four-Dimensional Formulation of Newtonian Mechanics and Their Relation to the Special and the General Theory of Relativity", Rev. Mod. Phys., 36 (4): 938–965, Bibcode:1964RvMP...36..938H, doi:10.1103/RevModPhys.36.938
- Hawking, Stephen W. (1966), "The occurrence of singularities in cosmology", Proceedings of the Royal Society, A294 (1439): 511–521, Bibcode:1966RSPSA.294..511H, doi:10.1098/rspa.1966.0221
- Hawking, S. W. (1975), "Particle Creation by Black Holes", Communications in Mathematical Physics, 43 (3): 199–220, Bibcode:1975CMaPh..43..199H, doi:10.1007/BF02345020
- Hawking, Stephen W. (1987), "Quantum cosmology", in Hawking, Stephen W.; Israel, Werner (eds.), 300 Years of Gravitation, Cambridge University Press, pp. 631–651, ISBN 0-521-37976-8
- Hawking, Stephen W.; Ellis, George F. R. (1973), The large scale structure of space-time, Cambridge University Press, ISBN 0-521-09906-4
- Heckmann, O. H. L.; Schücking, E. (1959), "Newtonsche und Einsteinsche Kosmologie", in Flügge, S. (ed.), Encyclopedia of Physics, vol. 53, p. 489
- Heusler, Markus (1998), "Stationary Black Holes: Uniqueness and Beyond", Living Reviews in Relativity, 1, doi:10.12942/lrr-1998-6, retrieved 2007-08-04
- Heusler, Markus (1996), Black Hole Uniqueness Theorems, Cambridge University Press, ISBN 0-521-56735-1
- Hey, Tony; Walters, Patrick (2003), The new quantum universe, Cambridge University Press, ISBN 0-521-56457-3
- Hough, Jim; Rowan, Sheila (2000), "Gravitational Wave Detection by Interferometry (Ground and Space)", Living Reviews in Relativity, 3, retrieved 2007-07-21
- Hubble, Edwin (1929), "A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae" (PDF), Proc. Natl. Acad. Sci., 15 (3): 168–173, Bibcode:1929PNAS...15..168H, doi:10.1073/pnas.15.3.168, PMC 522427, PMID 16577160, archived from the original (PDF) on 2008-06-26, retrieved 2016-07-11
- Hulse, Russell A.; Taylor, Joseph H. (1975), "Discovery of a pulsar in a binary system", Astrophys. J., 195: L51–L55, Bibcode:1975ApJ...195L..51H, doi:10.1086/181708
- Ibanez, L. E. (2000), "The second string (phenomenology) revolution", Class. Quant. Grav., 17 (5): 1117–1128, arXiv:hep-ph/9911499, Bibcode:2000CQGra..17.1117I, doi:10.1088/0264-9381/17/5/321
- Iorio, L. (2009), "An Assessment of the Systematic Uncertainty in Present and Future Tests of the Lense-Thirring Effect with Satellite Laser Ranging", Space Sci. Rev., 148 (1–4): 363, arXiv:0809.1373, Bibcode:2009SSRv..148..363I, doi:10.1007/s11214-008-9478-1
- Isham, Christopher J. (1994), "Prima facie questions in quantum gravity", in Ehlers, Jürgen; Friedrich, Helmut (eds.), Canonical Gravity: From Classical to Quantum, Springer, ISBN 3-540-58339-4
- Israel, Werner (1971), "Event Horizons and Gravitational Collapse", General Relativity and Gravitation, 2 (1): 53–59, Bibcode:1971GReGr...2...53I, doi:10.1007/BF02450518
- Israel, Werner (1987), "Dark stars: the evolution of an idea", in Hawking, Stephen W.; Israel, Werner (eds.), 300 Years of Gravitation, Cambridge University Press, pp. 199–276, ISBN 0-521-37976-8
- Janssen, Michel (2005), "Of pots and holes: Einstein's bumpy road to general relativity", Annalen der Physik, 14 (S1): 58–85, Bibcode:2005AnP...517S..58J, doi:10.1002/andp.200410130, archived from the original (PDF) on 2020-08-25, retrieved 2016-07-11
- Jaranowski, Piotr; Królak, Andrzej (2005), "Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case", Living Reviews in Relativity, 8, doi:10.12942/lrr-2005-3, retrieved 2007-07-30
- Kahn, Bob (1996–2012), Gravity Probe B Website, Stanford University, retrieved 2012-04-20
- Kahn, Bob (April 14, 2007), Was Einstein right? Scientists provide first public peek at Gravity Probe B results (Stanford University Press Release) (PDF), Stanford University News Service
- Kamionkowski, Marc; Kosowsky, Arthur; Stebbins, Albert (1997), "Statistics of Cosmic Microwave Background Polarization", Phys. Rev., D55 (12): 7368–7388, arXiv:astro-ph/9611125, Bibcode:1997PhRvD..55.7368K, doi:10.1103/PhysRevD.55.7368
- Kennefick, Daniel (2005), "Astronomers Test General Relativity: Light-bending and the Solar Redshift", in Renn, Jürgen (ed.), One hundred authors for Einstein, Wiley-VCH, pp. 178–181, ISBN 3-527-40574-7
- Kennefick, Daniel (2007), "Not Only Because of Theory: Dyson, Eddington and the Competing Myths of the 1919 Eclipse Expedition", Proceedings of the 7th Conference on the History of General Relativity, Tenerife, 2005, vol. 0709, p. 685, arXiv:0709.0685, Bibcode:2007arXiv0709.0685K
- Kenyon, I. R. (1990), General Relativity, Oxford University Press, ISBN 0-19-851996-6
- Kochanek, C.S.; Falco, E.E.; Impey, C.; Lehar, J. (2007), CASTLES Survey Website, Harvard-Smithsonian Center for Astrophysics, retrieved 2007-08-21
- Komar, Arthur (1959), "Covariant Conservation Laws in General Relativity", Phys. Rev., 113 (3): 934–936, Bibcode:1959PhRv..113..934K, doi:10.1103/PhysRev.113.934
- Kramer, Michael (2004), Karshenboim, S. G.; Peik, E. (eds.), "Astrophysics, Clocks and Fundamental Constants: Millisecond Pulsars as Tools of Fundamental Physics", Lecture Notes in Physics, 648, Springer: 33–54, arXiv:astro-ph/0405178, Bibcode:2004LNP...648...33K, doi:10.1007/978-3-540-40991-5_3, ISBN 978-3-540-21967-5
- Kramer, M.; Stairs, I. H.; Manchester, R. N.; McLaughlin, M. A.; Lyne, A. G.; Ferdman, R. D.; Burgay, M.; Lorimer, D. R.; Possenti, A. (2006), "Tests of general relativity from timing the double pulsar", Science, 314 (5796): 97–102, arXiv:astro-ph/0609417, Bibcode:2006Sci...314...97K, doi:10.1126/science.1132305, PMID 16973838
{{citation}}
: Unknown parameter|displayauthors=
ignored (|display-authors=
suggested) (help) - Kraus, Ute (1998), "Light Deflection Near Neutron Stars", Relativistic Astrophysics, Vieweg, pp. 66–81, ISBN 3-528-06909-0
- Kuchař, Karel (1973), "Canonical Quantization of Gravity", in Israel, Werner (ed.), Relativity, Astrophysics and Cosmology, D. Reidel, pp. 237–288, ISBN 90-277-0369-8
- Künzle, H. P. (1972), "Galilei and Lorentz Structures on spacetime: comparison of the corresponding geometry and physics", Annales de l'Institut Henri Poincaré A, 17: 337–362
- Lahav, Ofer; Suto, Yasushi (2004), "Measuring our Universe from Galaxy Redshift Surveys", Living Reviews in Relativity, 7, arXiv:astro-ph/0310642, Bibcode:2004LRR.....7....8L, doi:10.12942/lrr-2004-8, retrieved 2007-08-19
- Landgraf, M.; Hechler, M.; Kemble, S. (2005), "Mission design for LISA Pathfinder", Class. Quant. Grav., 22 (10): S487–S492, arXiv:gr-qc/0411071, Bibcode:2005CQGra..22S.487L, doi:10.1088/0264-9381/22/10/048
- Lehner, Luis (2001), "Numerical Relativity: A review", Class. Quant. Grav., 18 (17): R25–R86, arXiv:gr-qc/0106072, Bibcode:2001CQGra..18R..25L, doi:10.1088/0264-9381/18/17/202
- Lehner, Luis (2002), "NUMERICAL RELATIVITY: STATUS AND PROSPECTS", General Relativity and Gravitation - Proceedings of the 16th International Conference, p. 210, arXiv:gr-qc/0202055, Bibcode:2002grg..conf..210L, doi:10.1142/9789812776556_0010, ISBN 9789812381712
- Linde, Andrei (1990), Particle Physics and Inflationary Cosmology, Harwood, p. 3203, arXiv:hep-th/0503203, Bibcode:2005hep.th....3203L, ISBN 3-7186-0489-2
- Linde, Andrei (2005), "Towards inflation in string theory", J. Phys. Conf. Ser., 24: 151–160, arXiv:hep-th/0503195, Bibcode:2005JPhCS..24..151L, doi:10.1088/1742-6596/24/1/018
- Loll, Renate (1998), "Discrete Approaches to Quantum Gravity in Four Dimensions", Living Reviews in Relativity, 1, arXiv:gr-qc/9805049, Bibcode:1998LRR.....1...13L, doi:10.12942/lrr-1998-13, retrieved 2008-03-09
- Lovelock, David (1972), "The Four-Dimensionality of Space and the Einstein Tensor", J. Math. Phys., 13 (6): 874–876, Bibcode:1972JMP....13..874L, doi:10.1063/1.1666069
- Ludyk, Günter (2013). Einstein in Matrix Form (1st ed.). Berlin: Springer. ISBN 9783642357978.
- MacCallum, M. (2006), "Finding and using exact solutions of the Einstein equations", in Mornas, L.; Alonso, J. D. (eds.), A Century of Relativity Physics (ERE05, the XXVIII Spanish Relativity Meeting), vol. 841, American Institute of Physics, p. 129, arXiv:gr-qc/0601102, Bibcode:2006AIPC..841..129M, doi:10.1063/1.2218172
- Maddox, John (1998), What Remains To Be Discovered, Macmillan, ISBN 0-684-82292-X
- Mannheim, Philip D. (2006), "Alternatives to Dark Matter and Dark Energy", Prog. Part. Nucl. Phys., 56 (2): 340–445, arXiv:astro-ph/0505266, Bibcode:2006PrPNP..56..340M, doi:10.1016/j.ppnp.2005.08.001
- Mather, J. C.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E.; Fixsen, D. J.; Hewagama, T.; Isaacman, R. B.; Jensen, K. A.; Meyer, S. S. (1994), "Measurement of the cosmic microwave spectrum by the COBE FIRAS instrument", Astrophysical Journal, 420: 439–444, Bibcode:1994ApJ...420..439M, doi:10.1086/173574
{{citation}}
: Unknown parameter|displayauthors=
ignored (|display-authors=
suggested) (help) - Mermin, N. David (2005), It's About Time. Understanding Einstein's Relativity, Princeton University Press, ISBN 0-691-12201-6
- Messiah, Albert (1999), Quantum Mechanics, Dover Publications, ISBN 0-486-40924-4
- Miller, Cole (2002), Stellar Structure and Evolution (Lecture notes for Astronomy 606), University of Maryland, retrieved 2007-07-25
- Misner, Charles W.; Thorne, Kip. S.; Wheeler, John A. (1973), Gravitation, W. H. Freeman, ISBN 0-7167-0344-0
- Møller, Christian (1952), The Theory of Relativity (3rd ed.), Oxford University Press
- Narayan, Ramesh (2006), "Black holes in astrophysics", New Journal of Physics, 7: 199, arXiv:gr-qc/0506078, Bibcode:2005NJPh....7..199N, doi:10.1088/1367-2630/7/1/199
- Narayan, Ramesh; Bartelmann, Matthias (1997). "Lectures on Gravitational Lensing". arXiv:astro-ph/9606001.
{{cite arXiv}}
:|class=
ignored (help); Invalid|ref=harv
(help) - Narlikar, Jayant V. (1993), Introduction to Cosmology, Cambridge University Press, ISBN 0-521-41250-1
- Nieto, Michael Martin (2006), "The quest to understand the Pioneer anomaly" (PDF), EurophysicsNews, 37 (6): 30–34, Bibcode:2006ENews..37...30N, doi:10.1051/epn:2006604
- Nordström, Gunnar (1918), "On the Energy of the Gravitational Field in Einstein's Theory", Verhandl. Koninkl. Ned. Akad. Wetenschap., 26: 1238–1245
- Nordtvedt, Kenneth (2003). "Lunar Laser Ranging—a comprehensive probe of post-Newtonian gravity". arXiv:gr-qc/0301024.
{{cite arXiv}}
:|class=
ignored (help); Invalid|ref=harv
(help) - Norton, John D. (1985), "What was Einstein's principle of equivalence?" (PDF), Studies in History and Philosophy of Science, 16 (3): 203–246, doi:10.1016/0039-3681(85)90002-0, retrieved 2007-06-11
- Ohanian, Hans C.; Ruffini, Remo (1994), Gravitation and Spacetime, W. W. Norton & Company, ISBN 0-393-96501-5
- Olive, K. A.; Skillman, E. A. (2004), "A Realistic Determination of the Error on the Primordial Helium Abundance", Astrophysical Journal, 617 (1): 29–49, arXiv:astro-ph/0405588, Bibcode:2004ApJ...617...29O, doi:10.1086/425170
- O'Meara, John M.; Tytler, David; Kirkman, David; Suzuki, Nao; Prochaska, Jason X.; Lubin, Dan; Wolfe, Arthur M. (2001), "The Deuterium to Hydrogen Abundance Ratio Towards a Fourth QSO: HS0105+1619", Astrophysical Journal, 552 (2): 718–730, arXiv:astro-ph/0011179, Bibcode:2001ApJ...552..718O, doi:10.1086/320579
- Oppenheimer, J. Robert; Snyder, H. (1939), "On continued gravitational contraction", Physical Review, 56 (5): 455–459, Bibcode:1939PhRv...56..455O, doi:10.1103/PhysRev.56.455
- Overbye, Dennis (1999), Lonely Hearts of the Cosmos: the story of the scientific quest for the secret of the Universe, Back Bay, ISBN 0-316-64896-5
- Pais, Abraham (1982), 'Subtle is the Lord...' The Science and life of Albert Einstein, Oxford University Press, ISBN 0-19-853907-X
- Peacock, John A. (1999), Cosmological Physics, Cambridge University Press, ISBN 0-521-41072-X
- Peebles, P. J. E. (1966), "Primordial Helium abundance and primordial fireball II", Astrophysical Journal, 146: 542–552, Bibcode:1966ApJ...146..542P, doi:10.1086/148918
- Peebles, P. J. E. (1993), Principles of physical cosmology, Princeton University Press, ISBN 0-691-01933-9
- Peebles, P.J.E.; Schramm, D.N.; Turner, E.L.; Kron, R.G. (1991), "The case for the relativistic hot Big Bang cosmology", Nature, 352 (6338): 769–776, Bibcode:1991Natur.352..769P, doi:10.1038/352769a0
- Penrose, Roger (1965), "Gravitational collapse and spacetime singularities", Physical Review Letters, 14 (3): 57–59, Bibcode:1965PhRvL..14...57P, doi:10.1103/PhysRevLett.14.57
- Penrose, Roger (1969), "Gravitational collapse: the role of general relativity", Rivista del Nuovo Cimento, 1: 252–276, Bibcode:1969NCimR...1..252P
- Penrose, Roger (2004), The Road to Reality, A. A. Knopf, ISBN 0-679-45443-8
- Penzias, A. A.; Wilson, R. W. (1965), "A measurement of excess antenna temperature at 4080 Mc/s", Astrophysical Journal, 142: 419–421, Bibcode:1965ApJ...142..419P, doi:10.1086/148307
- Peskin, Michael E.; Schroeder, Daniel V. (1995), An Introduction to Quantum Field Theory, Addison-Wesley, ISBN 0-201-50397-2
- Peskin, Michael E. (2007), "Dark Matter and Particle Physics", Journal of the Physical Society of Japan, 76 (11): 111017, arXiv:0707.1536, Bibcode:2007JPSJ...76k1017P, doi:10.1143/JPSJ.76.111017
- Poisson, Eric (2004), "The Motion of Point Particles in Curved Spacetime", Living Reviews in Relativity, 7, doi:10.12942/lrr-2004-6, retrieved 2007-06-13
- Poisson, Eric (2004), A Relativist's Toolkit. The Mathematics of Black-Hole Mechanics, Cambridge University Press, ISBN 0-521-83091-5
- Polchinski, Joseph (1998a), String Theory Vol. I: An Introduction to the Bosonic String, Cambridge University Press, ISBN 0-521-63303-6
- Polchinski, Joseph (1998b), String Theory Vol. II: Superstring Theory and Beyond, Cambridge University Press, ISBN 0-521-63304-4
- Pound, R. V.; Rebka, G. A. (1959), "Gravitational Red-Shift in Nuclear Resonance", Physical Review Letters, 3 (9): 439–441, Bibcode:1959PhRvL...3..439P, doi:10.1103/PhysRevLett.3.439
- Pound, R. V.; Rebka, G. A. (1960), "Apparent weight of photons", Phys. Rev. Lett., 4 (7): 337–341, Bibcode:1960PhRvL...4..337P, doi:10.1103/PhysRevLett.4.337
- Pound, R. V.; Snider, J. L. (1964), "Effect of Gravity on Nuclear Resonance", Phys. Rev. Lett., 13 (18): 539–540, Bibcode:1964PhRvL..13..539P, doi:10.1103/PhysRevLett.13.539
- Ramond, Pierre (1990), Field Theory: A Modern Primer, Addison-Wesley, ISBN 0-201-54611-6
- Rees, Martin (1966), "Appearance of Relativistically Expanding Radio Sources", Nature, 211 (5048): 468–470, Bibcode:1966Natur.211..468R, doi:10.1038/211468a0
- Reissner, H. (1916), "Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie", Annalen der Physik, 355 (9): 106–120, Bibcode:1916AnP...355..106R, doi:10.1002/andp.19163550905
- Remillard, Ronald A.; Lin, Dacheng; Cooper, Randall L.; Narayan, Ramesh (2006), "The Rates of Type I X-Ray Bursts from Transients Observed with RXTE: Evidence for Black Hole Event Horizons", Astrophysical Journal, 646 (1): 407–419, arXiv:astro-ph/0509758, Bibcode:2006ApJ...646..407R, doi:10.1086/504862
- Renn, Jürgen, ed. (2007), The Genesis of General Relativity (4 Volumes), Dordrecht: Springer, ISBN 1-4020-3999-9
- Renn, Jürgen, ed. (2005), Albert Einstein—Chief Engineer of the Universe: Einstein's Life and Work in Context, Berlin: Wiley-VCH, ISBN 3-527-40571-2
- Reula, Oscar A. (1998), "Hyperbolic Methods for Einstein's Equations", Living Reviews in Relativity, 1, Bibcode:1998LRR.....1....3R, doi:10.12942/lrr-1998-3, retrieved 2007-08-29
- Rindler, Wolfgang (2001), Relativity. Special, General and Cosmological, Oxford University Press, ISBN 0-19-850836-0
- Rindler, Wolfgang (1991), Introduction to Special Relativity, Clarendon Press, Oxford, ISBN 0-19-853952-5
- Robson, Ian (1996), Active galactic nuclei, John Wiley, ISBN 0-471-95853-0
- Roulet, E.; Mollerach, S. (1997), "Microlensing", Physics Reports, 279 (2): 67–118, arXiv:astro-ph/9603119, Bibcode:1997PhR...279...67R, doi:10.1016/S0370-1573(96)00020-8
- Rovelli, Carlo (2000). "Notes for a brief history of quantum gravity". arXiv:gr-qc/0006061.
{{cite arXiv}}
:|class=
ignored (help); Invalid|ref=harv
(help) - Rovelli, Carlo (1998), "Loop Quantum Gravity", Living Reviews in Relativity, 1, doi:10.12942/lrr-1998-1, retrieved 2008-03-13
- Schäfer, Gerhard (2004), "Gravitomagnetic Effects", General Relativity and Gravitation, 36 (10): 2223–2235, arXiv:gr-qc/0407116, Bibcode:2004GReGr..36.2223S, doi:10.1023/B:GERG.0000046180.97877.32
- Schödel, R.; Ott, T.; Genzel, R.; Eckart, A.; Mouawad, N.; Alexander, T. (2003), "Stellar Dynamics in the Central Arcsecond of Our Galaxy", Astrophysical Journal, 596 (2): 1015–1034, arXiv:astro-ph/0306214, Bibcode:2003ApJ...596.1015S, doi:10.1086/378122
- Schutz, Bernard F. (1985), A first course in general relativity, Cambridge University Press, ISBN 0-521-27703-5
- Schutz, Bernard F. (2001), "Gravitational radiation", in Murdin, Paul (ed.), Encyclopedia of Astronomy and Astrophysics, Grove's Dictionaries, ISBN 1-56159-268-4
- Schutz, Bernard F. (2003), Gravity from the ground up, Cambridge University Press, ISBN 0-521-45506-5
- Schwarz, John H. (2007), "String Theory: Progress and Problems", Progress of Theoretical Physics Supplement, 170: 214, arXiv:hep-th/0702219, Bibcode:2007PThPS.170..214S, doi:10.1143/PTPS.170.214
- Schwarzschild, Karl (1916a), "Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie", Sitzungsber. Preuss. Akad. D. Wiss.: 189–196
- Schwarzschild, Karl (1916b), "Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie", Sitzungsber. Preuss. Akad. D. Wiss.: 424–434
- Seidel, Edward (1998), "Numerical Relativity: Towards Simulations of 3D Black Hole Coalescence", in Narlikar, J. V.; Dadhich, N. (eds.), Gravitation and Relativity: At the turn of the millennium (Proceedings of the GR-15 Conference, held at IUCAA, Pune, India, December 16–21, 1997), IUCAA, p. 6088, arXiv:gr-qc/9806088, Bibcode:1998gr.qc.....6088S, ISBN 81-900378-3-8
- Seljak, Uros̆; Zaldarriaga, Matias (1997), "Signature of Gravity Waves in the Polarization of the Microwave Background", Phys. Rev. Lett., 78 (11): 2054–2057, arXiv:astro-ph/9609169, Bibcode:1997PhRvL..78.2054S, doi:10.1103/PhysRevLett.78.2054
- Shapiro, S. S.; Davis, J. L.; Lebach, D. E.; Gregory, J. S. (2004), "Measurement of the solar gravitational deflection of radio waves using geodetic very-long-baseline interferometry data, 1979–1999", Phys. Rev. Lett., 92 (12): 121101, Bibcode:2004PhRvL..92l1101S, doi:10.1103/PhysRevLett.92.121101, PMID 15089661
- Shapiro, Irwin I. (1964), "Fourth test of general relativity", Phys. Rev. Lett., 13 (26): 789–791, Bibcode:1964PhRvL..13..789S, doi:10.1103/PhysRevLett.13.789
- Shapiro, I. I.; Pettengill, Gordon; Ash, Michael; Stone, Melvin; Smith, William; Ingalls, Richard; Brockelman, Richard (1968), "Fourth test of general relativity: preliminary results", Phys. Rev. Lett., 20 (22): 1265–1269, Bibcode:1968PhRvL..20.1265S, doi:10.1103/PhysRevLett.20.1265
- Singh, Simon (2004), Big Bang: The Origin of the Universe, Fourth Estate, ISBN 0-00-715251-5
- Sorkin, Rafael D. (2005), "Causal Sets: Discrete Gravity", in Gomberoff, Andres; Marolf, Donald (eds.), Lectures on Quantum Gravity, Springer, p. 9009, arXiv:gr-qc/0309009, Bibcode:2003gr.qc.....9009S, ISBN 0-387-23995-2
- Sorkin, Rafael D. (1997), "Forks in the Road, on the Way to Quantum Gravity", Int. J. Theor. Phys., 36 (12): 2759–2781, arXiv:gr-qc/9706002, Bibcode:1997IJTP...36.2759S, doi:10.1007/BF02435709
- Spergel, D. N.; Verde, L.; Peiris, H. V.; Komatsu, E.; Nolta, M. R.; Bennett, C. L.; Halpern, M.; Hinshaw, G.; Jarosik, N. (2003), "First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters", Astrophys. J. Suppl., 148 (1): 175–194, arXiv:astro-ph/0302209, Bibcode:2003ApJS..148..175S, doi:10.1086/377226
{{citation}}
: Unknown parameter|displayauthors=
ignored (|display-authors=
suggested) (help) - Spergel, D. N.; Bean, R.; Doré, O.; Nolta, M. R.; Bennett, C. L.; Dunkley, J.; Hinshaw, G.; Jarosik, N.; Komatsu, E. (2007), "Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology", Astrophysical Journal Supplement, 170 (2): 377–408, arXiv:astro-ph/0603449, Bibcode:2007ApJS..170..377S, doi:10.1086/513700
{{citation}}
: Unknown parameter|displayauthors=
ignored (|display-authors=
suggested) (help) - Springel, Volker; White, Simon D. M.; Jenkins, Adrian; Frenk, Carlos S.; Yoshida, Naoki; Gao, Liang; Navarro, Julio; Thacker, Robert; Croton, Darren (2005), "Simulations of the formation, evolution and clustering of galaxies and quasars", Nature, 435 (7042): 629–636, arXiv:astro-ph/0504097, Bibcode:2005Natur.435..629S, doi:10.1038/nature03597, PMID 15931216
{{citation}}
: Unknown parameter|displayauthors=
ignored (|display-authors=
suggested) (help) - Stairs, Ingrid H. (2003), "Testing General Relativity with Pulsar Timing", Living Reviews in Relativity, 6, arXiv:astro-ph/0307536, Bibcode:2003LRR.....6....5S, doi:10.12942/lrr-2003-5, retrieved 2007-07-21
- Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E. (2003), Exact Solutions of Einstein's Field Equations (2 ed.), Cambridge University Press, ISBN 0-521-46136-7
- Synge, J. L. (1972), Relativity: The Special Theory, North-Holland Publishing Company, ISBN 0-7204-0064-3
- Szabados, László B. (2004), "Quasi-Local Energy-Momentum and Angular Momentum in GR", Living Reviews in Relativity, 7, doi:10.12942/lrr-2004-4, retrieved 2007-08-23
- Taylor, Joseph H. (1994), "Binary pulsars and relativistic gravity", Rev. Mod. Phys., 66 (3): 711–719, Bibcode:1994RvMP...66..711T, doi:10.1103/RevModPhys.66.711
- Thiemann, Thomas (2006), "Approaches to Fundamental Physics: Loop Quantum Gravity: An Inside View", Lecture Notes in Physics, 721: 185–263, arXiv:hep-th/0608210, Bibcode:2007LNP...721..185T, doi:10.1007/978-3-540-71117-9_10, ISBN 978-3-540-71115-5
{{citation}}
: Invalid|ref=harv
(help) - Thiemann, Thomas (2003), "Lectures on Loop Quantum Gravity", Lecture Notes in Physics, 631: 41–135, arXiv:gr-qc/0210094, doi:10.1007/978-3-540-45230-0_3, ISBN 978-3-540-40810-9
- ’t Hooft, Gerard; Veltman, Martinus (1974), "One Loop Divergencies in the Theory of Gravitation", Ann. Inst. Poincare, 20: 69
- Thorne, Kip S. (1972), "Nonspherical Gravitational Collapse—A Short Review", in Klauder, J. (ed.), Magic without Magic, W. H. Freeman, pp. 231–258
- Thorne, Kip S. (1994), Black Holes and Time Warps: Einstein's Outrageous Legacy, W W Norton & Company, ISBN 0-393-31276-3
- Thorne, Kip S. (1995), "Gravitational radiation", Particle and Nuclear Astrophysics and Cosmology in the Next Millenium: 160, arXiv:gr-qc/9506086, Bibcode:1995pnac.conf..160T, ISBN 0-521-36853-7
- Townsend, Paul K. (1997). "Black Holes (Lecture notes)". arXiv:gr-qc/9707012.
{{cite arXiv}}
:|class=
ignored (help); Invalid|ref=harv
(help) - Townsend, Paul K. (1996). "Four Lectures on M-Theory". arXiv:hep-th/9612121.
{{cite arXiv}}
:|class=
ignored (help); Invalid|ref=harv
(help) - Traschen, Jenny (2000), Bytsenko, A.; Williams, F. (eds.), "An Introduction to Black Hole Evaporation", Mathematical Methods of Physics (Proceedings of the 1999 Londrina Winter School), World Scientific: 180, arXiv:gr-qc/0010055, Bibcode:2000mmp..conf..180T
- Trautman, Andrzej (2006), "Einstein–Cartan theory", in Françoise, J.-P.; Naber, G. L.; Tsou, S. T. (eds.), Encyclopedia of Mathematical Physics, Vol. 2, Elsevier, pp. 189–195, arXiv:gr-qc/0606062, Bibcode:2006gr.qc.....6062T
- Unruh, W. G. (1976), "Notes on Black Hole Evaporation", Phys. Rev. D, 14 (4): 870–892, Bibcode:1976PhRvD..14..870U, doi:10.1103/PhysRevD.14.870
- Valtonen, M. J.; Lehto, H. J.; Nilsson, K.; Heidt, J.; Takalo, L. O.; Sillanpää, A.; Villforth, C.; Kidger, M.; Poyner, G. (2008), "A massive binary black-hole system in OJ 287 and a test of general relativity", Nature, 452 (7189): 851–853, arXiv:0809.1280, Bibcode:2008Natur.452..851V, doi:10.1038/nature06896, PMID 18421348
{{citation}}
: Unknown parameter|displayauthors=
ignored (|display-authors=
suggested) (help) - Veltman, Martinus (1975), "Quantum Theory of Gravitation", in Balian, Roger; Zinn-Justin, Jean (eds.), Methods in Field Theory - Les Houches Summer School in Theoretical Physics., vol. 77, North Holland
- Wald, Robert M. (1975), "On Particle Creation by Black Holes", Commun. Math. Phys., 45 (3): 9–34, Bibcode:1975CMaPh..45....9W, doi:10.1007/BF01609863
- Wald, Robert M. (1984), General Relativity, University of Chicago Press, ISBN 0-226-87033-2
- Wald, Robert M. (1994), Quantum field theory in curved spacetime and black hole thermodynamics, University of Chicago Press, ISBN 0-226-87027-8
- Wald, Robert M. (2001), "The Thermodynamics of Black Holes", Living Reviews in Relativity, 4, Bibcode:2001LRR.....4....6W, doi:10.12942/lrr-2001-6, retrieved 2007-08-08
- Walsh, D.; Carswell, R. F.; Weymann, R. J. (1979), "0957 + 561 A, B: twin quasistellar objects or gravitational lens?", Nature, 279 (5712): 381–4, Bibcode:1979Natur.279..381W, doi:10.1038/279381a0, PMID 16068158
- Wambsganss, Joachim (1998), "Gravitational Lensing in Astronomy", Living Reviews in Relativity, 1, arXiv:astro-ph/9812021, Bibcode:1998LRR.....1...12W, doi:10.12942/lrr-1998-12, retrieved 2007-07-20
- Weinberg, Steven (1972), Gravitation and Cosmology, John Wiley, ISBN 0-471-92567-5
- Weinberg, Steven (1995), The Quantum Theory of Fields I: Foundations, Cambridge University Press, ISBN 0-521-55001-7
- Weinberg, Steven (1996), The Quantum Theory of Fields II: Modern Applications, Cambridge University Press, ISBN 0-521-55002-5
- Weinberg, Steven (2000), The Quantum Theory of Fields III: Supersymmetry, Cambridge University Press, ISBN 0-521-66000-9
- Weisberg, Joel M.; Taylor, Joseph H. (2003), "The Relativistic Binary Pulsar B1913+16"", in Bailes, M.; Nice, D. J.; Thorsett, S. E. (eds.), Proceedings of "Radio Pulsars," Chania, Crete, August, 2002, ASP Conference Series
- Weiss, Achim (2006), "Elements of the past: Big Bang Nucleosynthesis and observation", Einstein Online, Max Planck Institute for Gravitational Physics, archived from the original on 2007-02-08, retrieved 2007-02-24
- Wheeler, John A. (1990), A Journey Into Gravity and Spacetime, Scientific American Library, San Francisco: W. H. Freeman, ISBN 0-7167-6034-7
- Will, Clifford M. (1993), Theory and experiment in gravitational physics, Cambridge University Press, ISBN 0-521-43973-6
- Will, Clifford M. (2006), "The Confrontation between General Relativity and Experiment", Living Reviews in Relativity, 9, arXiv:gr-qc/0510072, Bibcode:2006LRR.....9....3W, doi:10.12942/lrr-2006-3, retrieved 2007-06-12
- Zwiebach, Barton (2004), A First Course in String Theory, Cambridge University Press, ISBN 0-521-83143-1
ਹੋਰ ਲਿਖਤਾਂ
ਸੋਧੋ- Popular books
- Geroch, R (1981), General Relativity from A to B, Chicago: University of Chicago Press, ISBN 0-226-28864-1
- Lieber, Lillian (2008), The Einstein Theory of Relativity: A Trip to the Fourth Dimension, Philadelphia: Paul Dry Books, Inc., ISBN 978-1-58988-044-3
- Wald, Robert M. (1992), Space, Time, and Gravity: the Theory of the Big Bang and Black Holes, Chicago: University of Chicago Press, ISBN 0-226-87029-4
- Wheeler, John; Ford, Kenneth (1998), Geons, Black Holes, & Quantum Foam: a life in physics, New York: W. W. Norton, ISBN 0-393-31991-1
- Beginning undergraduate textbooks
- Callahan, James J. (2000), The Geometry of Spacetime: an Introduction to Special and General Relativity, New York: Springer, ISBN 0-387-98641-3
- Taylor, Edwin F.; Wheeler, John Archibald (2000), Exploring Black Holes: Introduction to General Relativity, Addison Wesley, ISBN 0-201-38423-X
{{citation}}
: CS1 maint: multiple names: authors list (link)
- Advanced undergraduate textbooks
- B. F. Schutz (2009), A First Course in General Relativity (Second Edition), Cambridge University Press, ISBN 978-0-521-88705-2
- Cheng, Ta-Pei (2005), Relativity, Gravitation and Cosmology: a Basic Introduction, Oxford and New York: Oxford University Press, ISBN 0-19-852957-0
- Gron, O.; Hervik, S. (2007), Einstein's General theory of Relativity, Springer, ISBN 978-0-387-69199-2
- Hartle, James B. (2003), Gravity: an Introduction to Einstein's General Relativity, San Francisco: Addison-Wesley, ISBN 0-8053-8662-9
- Hughston, L. P. & Tod, K. P. (1991), Introduction to General Relativity, Cambridge: Cambridge University Press, ISBN 0-521-33943-X
{{citation}}
: CS1 maint: multiple names: authors list (link) - d'Inverno, Ray (1992), Introducing Einstein's Relativity, Oxford: Oxford University Press, ISBN 0-19-859686-3
- Ludyk, Günter (2013). Einstein in Matrix Form (1st ed.). Berlin: Springer. ISBN 9783642357978.
- Graduate-level textbooks
- Carroll, Sean M. (2004), Spacetime and Geometry: An Introduction to General Relativity, San Francisco: Addison-Wesley, ISBN 0-8053-8732-3
- Grøn, Øyvind; Hervik, Sigbjørn (2007), Einstein's General Theory of Relativity, New York: Springer, ISBN 978-0-387-69199-2
- Landau, Lev D.; Lifshitz, Evgeny F. (1980), The Classical Theory of Fields (4th ed.), London: Butterworth-Heinemann, ISBN 0-7506-2768-9
- Misner, Charles W.; Thorne, Kip. S.; Wheeler, John A. (1973), Gravitation, W. H. Freeman, ISBN 0-7167-0344-0
- Stephani, Hans (1990), General Relativity: An Introduction to the Theory of the Gravitational Field, Cambridge: Cambridge University Press, ISBN 0-521-37941-5
- Wald, Robert M. (1984), General Relativity, University of Chicago Press, ISBN 0-226-87033-2
ਬਾਹਰੀ ਲਿੰਕ
ਸੋਧੋ- Einstein Online Archived 2014-06-01 at the Wayback Machine. – Articles on a variety of aspects of relativistic physics for a general audience; hosted by the Max Planck Institute for Gravitational Physics
- NCSA Spacetime Wrinkles Archived 2015-03-27 at the Wayback Machine. – produced by the numerical relativity group at the NCSA, with an elementary introduction to general relativity
- Courses
- Lectures
- Tutorials
- Einstein's General Theory of Relativity on ਯੂਟਿਊਬ (lecture by Leonard Susskind recorded September 22, 2008 at Stanford University).
- Series of lectures on General Relativity given in 2006 at the Institut Henri Poincaré (introductory/advanced).
- General Relativity Tutorials Archived 2007-07-07 at the Wayback Machine. by John Baez.
- Brown, Kevin. "Reflections on relativity". Mathpages.com. Retrieved May 29, 2005.
- Carroll, Sean M. "Lecture Notes on General Relativity". Retrieved January 5, 2014.
- Moor, Rafi. "Understanding General Relativity". Retrieved July 11, 2006.
- Waner, Stefan. "Introduction to Differential Geometry and General Relativity" (PDF). Retrieved 2015-04-05.