ਵਿਕੀਪੀਡੀਆ ਵਿੱਦਿਆ ਪ੍ਰੋਗਰਾਮ
Main Page
ਮੁੱਖ ਸਫ਼ਾ

ਮੈਂਬਰ
Members
ਮੈਂਬਰ

ਵਿਸ਼ੇ
Subjects
ਵਿਸ਼ੇ

ਨੋਟਿਸਬੋਰਡ
Noticeboard
ਨੋਟਿਸਬੋਰਡ

ਚਰਚਾ
Discussion
ਚਰਚਾ

  ਇਲੈਕਟ੍ਰੋਸਟੈਟਿਕਸ  
  ਇਲੈਕਟ੍ਰਿਕ ਚਾਰਜ  
          Menu         Page 12 of 18


ਕੂਲੌਂਬ ਦਾ ਨਿਯਮ

ਕੂਲੌਂਬ ਨੇ ਚਾਰਜ ਹੋਈਆਂ ਚੀਜ਼ਾਂ ਦਰਮਿਆਨ ਫੋਰਸਾਂ ਨੂੰ ਨਾਪਣ ਲਈ ਬਹੁਤ ਸਾਰੇ ਪ੍ਰਯੋਗ ਕੀਤੇ । ਜਦੋਂ ਚਾਰਜ ਹੋਈਆਂ ਚੀਜ਼ਾਂ ਦੇ ਰੇਖਿਕ ਅਕਾਰ ਉਹਨਾਂ ਦਰਮਿਆਨ ਦੂਰੀ ਤੋਂ ਕਿਤੇ ਸੂਖਮ ਹੁੰਦੇ ਹਨ, ਤਾਂ ਉਹਨਾਂ ਦਾ ਅਕਾਰ ਇਗਨੋਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਅਤੇ ਚਾਰਜ ਹੋਈਆਂ ਚੀਜ਼ਾਂ ਨੂੰ ਪੋਆਇੰਟ ਚਾਰਜ ਦੇ ਤੌਰ ਤੇ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਕੂਲੌਂਬ ਦੇ ਨਿਯਮ ਮੁਤਾਬਿਕ

ਦੋ ਪੋਆਇੰਟ ਚਾਰਜਾਂ ਦਰਮਿਆਨ ਪਰਸਪਰ ਕ੍ਰਿਆ ਦਾ ਫੋਰਸ ਚਾਰਜਾਂ ਦੇ ਮੁੱਲ ਦੇ ਗੁਣਨਫਲ ਦੇ ਸਿੱਧੇ ਤੌਰ ਤੇ ਅਨੁਪਾਤ ਵਿੱਚ (ਡਾਇਰੈਕਟਲੀ ਪਰੋਪੋਸ਼ਨਲ) ਹੁੰਦਾ ਹੈ ਅਤੇ ਉਹਨਾਂ ਦਰਮਿਆਨ ਦੂਰੀ ਦੇ ਉਲਟੇ ਅਨੁਪਾਤ ਵਿੱਚ (ਇਨਵਰਸਲੀ ਪਰੋਪੋਸ਼ਨਲ) ਹੁੰਦਾ ਹੈ। ਫੋਰਸ ਹਮੇਸ਼ਾਂ ਦੋਵੇਂ ਚਾਰਜਾਂ ਦੀ ਪੁਜੀਸ਼ਨ ਨੂੰ ਮਿਲਾਉਣ ਵਾਲੀ ਲਾਈਨ ਦੇ ਨਾਲ ਨਾਲ ਕ੍ਰਿਆ (ਐਕਟ) ਕਰਦਾ ਹੈ।

F ∝ (|ਕਿਆਊ-ਵੱਨ| ✕ |ਕਿਆਊ-ਟੂ|)/(r2) ਜਾਂ F = k (|ਕਿਆਊ-ਵੱਨ| ✕ |ਕਿਆਊ-ਟੂ|)/(r2)

  • ਜਿੱਥੇ k, ਇਲੈਕਟ੍ਰੋਸਟੈਟਿਕਸ ਫੋਰਸ ਕੌਂਸਟੈਂਟ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਜਿਸਦਾ ਮੁੱਲ ਚਾਰਜਾਂ ਨੂੰ ਵੱਖਰਾ ਕਰਨ ਵਾਲੇ ਮਾਧਿਅਮ (ਮੀਡੀਅਮ) ਦੀ ਫਿਤਰਤ ਉੱਤੇ ਅਤੇ ਯੂਨਿਟਾਂ ਦੇ ਸਿਸਟਮ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ।

  • ਜਦੋਂ ਚਾਰਜ ਫਰੀ ਸਪੇਸ (ਹਵਾ/ਵੈਕੱਮ) ਵਿੱਚ ਸਥਿਤ ਹੁੰਦੇ ਹਨ, ਤਾਂ cgs ਸਿਸਟਮ ਵਿੱਚ ਇਸ ਇਲੈਕਟ੍ਰੋਸਟੈਟਿਕਸ ਫੋਰਸ ਕੌਂਸਟੈਂਟ ਦਾ ਮੁੱਲ
k = 1 

ਹੁੰਦਾ ਹੈ।

  • S I ਯੂਨਿਟਾਂ ਅੰਦਰ k = 9 ✕ 109 N m2 C-2 ਹੁੰਦਾ ਹੈ।
  • ਅਸੀਂ ਲਿਖਦੇ ਹਾਂ;
k = 1/(4πε₀)
  • ਇਸਤਰਾਂ

F = (|ਕਿਆਊ-ਵੱਨ| ✕ |ਕਿਆਊ-ਟੂ|)/( (4πε₀ r2)

ε₀ ਦੀਆਂ ਯੂਨਿਟਾਂ, ਡਾਇਮੈਨਸ਼ਨਾਂ ਅਤੇ ਮੁੱਲ

    • ਓਪਰੋਕਤ ਇਕੁਏਸ਼ਨ ਤੋਂ;

ε₀ = (|ਕਿਆਊ-ਵੱਨ| ✕ |ਕਿਆਊ-ਟੂ|)/( (4π F r2)

ਕਿਉਂਕਿ S I ਯੂਨਿਟਾਂ ਵਿੱਚ ਚਾਰਜ ਕੂਲੌਂਬ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ, ਇਸਲਈ,

ਐਪਸਾਈਲਨ-ਨੌਟ ਦੀਆਂ ਯੂਨਿਟਾਂ = C2 N-1 m-2

    • ਐਪਸਾਈਲਨ-ਨੌਟ ਦੀਆਂ ਡਾਇਮੈਨਸ਼ਨਾਂ = [M-1 L-3 A2 T4]
    • ਐਪਸਾਈਲਨ-ਨੌਟ ਦਾ ਮੁੱਲ = 1/(4π k) = 8.85 ✕ 10-12 C2 N-1 m-2

ਵਿਕੀਪੀਡੀਆ ਆਰਟੀਕਲ ਲਿੰਕ

ਸ਼ਬਦਾਵਲੀ

ਅਗਲੇ ਸਫ਼ੇ ਤੇ ਜਾਣ ਵਾਸਤੇ ਹੇਠਲਾ ਫਾਰਵਰਡ ਤੀਰ ਦਬਾਓ

ਪਿਛਲਾ ਸਫ਼ਾ               ਅਗਲਾ ਸਫ਼ਾ