ਫਾਟਕ:ਇਲੈਕਟ੍ਰੋਸਟੈਟਿਕਸ/ਨਿਰੰਤਰ ਚਾਰਜ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ ਕਾਰਨ ਬਲ

ਵਿਕੀਪੀਡੀਆ ਵਿੱਦਿਆ ਪ੍ਰੋਗਰਾਮ
Main Page
ਮੁੱਖ ਸਫ਼ਾ

ਮੈਂਬਰ
Members
ਮੈਂਬਰ

ਵਿਸ਼ੇ
Subjects
ਵਿਸ਼ੇ

ਨੋਟਿਸਬੋਰਡ
Noticeboard
ਨੋਟਿਸਬੋਰਡ

ਚਰਚਾ
Discussion
ਚਰਚਾ

  ਇਲੈਕਟ੍ਰੋਸਟੈਟਿਕਸ  
  ਇਲੈਕਟ੍ਰਿਕ ਚਾਰਜ  
          Menu         Page 18 of 18


ਨਿਰੰਤਰ ਚਾਰਜ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ ਕਾਰਨ ਬਲ

ਕਿਸੇ ਨਿਰੰਤਰ ਚਾਰਜ ਵਿਸਥਾਰ-ਵੰਡ ਕਾਰਣ ਫੋਰਸ ਨੂੰ ਡਿਸਕ੍ਰੀਟ ਚਾਰਜਾਂ ਦੇ ਕਿਸੇ ਸਿਸਟਮ ਦੇ ਲਈ ਹੀ ਵਰਤੇ ਜਾਂਦੇ ਤਰੀਕੇ ਨਾਲ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

  • ਮੰਨ ਲਓ ਸਪੇਸ ਵਿੱਚ ਕੋਈ ਨਿਰੰਤਰ ਚਾਰਜ ਵਿਸਥਾਰ-ਵੰਡ ਇੱਕ ਵੌਲੀਊਮ ਚਾਰਜ ਡੈਂਸਟੀ ρ ਰੱਖਦੀ ਹੈ। ਕਿਸੇ ਢੁਕਵੇਂ ਚੁਣੇ ਗਏ ਮੂਲ-ਬਿੰਦੂ O (ਉਰਿਜਨ) ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ, ਚਾਰਜ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ ਅੰਦਰ ਕਿਸੇ ਬਿੰਦੂ ਉੱਤੇ ਪੁਜੀਸ਼ਨ ਵੈਕਟਰ ਨੂੰ ri ਮੰਨ ਲੈਂਦੇ ਹਾਂ । ਵੌਲੀਊਮ ਚਾਰਜ ਡੈਂਸਟੀ ρ, ਇਸ ਪੁਜੀਸ਼ਨ ਵੈਕਟਰ ri ਦਾ ਇੱਕ ਫੰਕਸ਼ਨ ਹੋਵੇਗੀ, ਯਾਨਿ ਕਿ, ਇਹ ਬਿੰਦੂ ਤੋਂ ਬਿੰਦੂ ਤੱਕ (ਇੱਕ ਸਥਾਨ ਤੋਂ ਦੂਜੇ ਸਥਾਨ ਤੱਕ) ਤਬਦੀਲ ਹੁੰਦੀ ਹੋ ਸਕਦੀ ਹੈ। ਚਾਰਜ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ ਨੂੰ ਛੋਟੇ ΔV ਸਾਈਜ਼ਾਂ ਦੇ ਵੌਲੀਊਮ ਐਲੀਮੈਂਟਾਂ ਵਿੱਚ ਵੰਡ ਦਿਓ । ਇਸਤਰਾਂ ਇਸ ਵੌਲੀਊਮ ਐਲੀਮੈਂਟ ਅੰਦਰ ਚਾਰਜ ਇਹ ਰਹੇਗਾ;
(ΔQ) = ρ(ΔV)
  • ਹੁਣ ਪੁਜੀਸ਼ਨ ਵੈਕਟਰ r₀ ਰੱਖਣ ਵਾਲਾ ਕੋਈ ਆਮ ਬਿੰਦੂ P ਚਾਰਜ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ ਦੇ ਅੰਦਰ ਜਾਂ ਬਾਹਰ ਲਓ ।
  • ਕੂਲੌਂਬ ਦਾ ਨਿਯਮ ਵਰਤਦੇ ਹੋਏ, P ਉੱਤੇ ਕਿਸੇ ਸੂਖਮ ਟੈਸਟ ਚਾਰਜ ਕਿਆਊ₀ (q₀) ਉੱਤੇ ਚਾਰਜ ਐਲੀਮੈਂਟ ΔQ ਕਾਰਣ ਫੋਰਸ ਇਹ ਹੋਵੇਗਾ;
dF = q₀ (ΔQ)/(4πε₀ r’2) = q₀ (ρ(ΔV))/(4πε₀ r’2)
ਜਿੱਥੇ r’ = r₀ - ri ਹੁੰਦਾ ਹੈ।
  • ਸੁਪਰਪੁਜੀਸ਼ਨ ਸਿਧਾਂਤ ਮੁਤਾਬਿਕ, ਸਾਰੇ ਦੇ ਸਾਰੇ ਵੌਲਿਊਮ ਦੀ ਚਾਰਜ ਵਿਸਥਾਰ-ਵੰਡੇ ਕਾਰਨ ਬਣਿਆ ਕੁੱਲ ਫੋਰਸ ਵੱਖਰੇ ਵੱਖਰੇ ਵੌਲੀਊਮ ਐਲੀਮੈਂਟਾਂ ਕਾਰਨ ਫੋਰਸਾਂ ਉੱਤੇ ਜੋੜ ਕਰਕੇ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ;
F = ∑ਸਾਰੇ ΔV ਉੱਤੇ q₀ (ρ(ΔV))/(4πε₀ r’2)

ਜਦੋਂ ΔV ➙ 0 ਨੇੜੇ ਪਹੁੰਚਣ ਲੱਗਦਾ ਹੈ ਤਾਂ, ਅਸੀਂ ਕੁੱਲ ਫੋਰਸ ਨੂੰ ਜੋੜ ਦੀ ਜਗਹ ਇੰਟਗ੍ਰਲ ਬਣਾ ਸਕਦੇ ਹਾਂ ਤੇ ਇੰਝ ਲਿਖ ਸਕਦੇ ਹਾਂ;

F = ∫ V q₀ (ρ(ΔV))/(4πε₀ r’2) = F
F= q₀/(4πε₀)∫ V (ρ(ΔV))/ (r’2)

ਇਸੇ ਤਰਾਂ ਅਸੀਂ, ਚਾਰਜ ਦੀ ਨਿਰੰਤਰ ਲਾਈਨ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ ਕਾਰਨ ਪੈਦਾ ਹੋਏ ਕੁੱਲ ਫੋਰਸ ਨੂੰ ਲਿਖ ਸਕਦੇ ਹਾਂ;

F= q₀/(4πε₀)∫ V (ρ(Δl))/ (r’2)

ਅਤੇ ਚਾਰਜ ਦੇ ਨਿਰੰਤਰ ਸਰਫੇਸ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ ਕਾਰਣ ਪੇਦਾ ਹੋਏ ਫੋਰਸ ਨੂੰ ਇਸਤਰਾਂ ਲਿਖ ਸਕਦੇ ਹਾਂ;

F= q₀/(4πε₀)∫ V (ρ(ΔS))/ (r’2)

ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਵਿੱਚ ਚਾਰਜ ਡੈਂਸਟੀ

ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਵਿੱਚ, ਚਾਰਜ ਡੈਂਸਟੀ ρq ਇਸ ਇਕੁਏਸ਼ਨ ਨਾਲ ਵੇਵ ਫੰਕਸ਼ਨ ψ(r) ਨਾਲ ਸਬੰਧ ਰੱਖਦੀ ਹੈ;

ਜਿੱਥੇ q ਕਣ ਦਾ ਚਾਰਜ ਹੁੰਦਾ ਹੈ ਅਤੇ |ψ(r)|2 = ψ*(r)ψ(r), ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਡੈਂਸਟੀ ਫੰਕਸ਼ਨ ਹੁੰਦਾ ਹੈ, ਯਾਨਿ ਕਿ, ਪੁਜ਼ੀਸ਼ਨ r ਉੱਤੇ ਸਥਿਤ ਕਿਸੇ ਕਣ (ਪਾਰਟੀਕਲ) ਦੀ ਪ੍ਰਤਿ ਯੂਨਿਟ ਵੌਲੀਊਮ ਵਾਲੀ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਹੁੰਦੀ ਹੈ। ਜਦੋਂ ਵੇਵ ਫੰਕਸ਼ਨ ਨੂੰ ਨੌਰਮਲਾਇਜ਼ ਕੀਤਾ ਜਾਂਦਾ ਹੈ – ਤਾਂ ਖੇਤਰ rR ਅੰਦਰ ਔਸਤਨ ਚਾਰਜ ਇਹ ਹੁੰਦਾ ਹੈ;

ਜਿੱਥੇ d3r 3-ਅਯਾਮੀ ਪੁਜ਼ੀਸ਼ਨ ਸਪੇਸ ਉੱਤੇ ਇੰਟੀਗ੍ਰੇਸ਼ਨ ਨਾਪ ਹੁੰਦਾ ਹੈ।

ਵਿਕੀਪੀਡੀਆ ਆਰਟੀਕਲ ਲਿੰਕ

ਸ਼ਬਦਾਵਲੀ

ਅਗਲੇ ਸਫ਼ੇ ਤੇ ਜਾਣ ਵਾਸਤੇ ਹੇਠਲਾ ਫਾਰਵਰਡ ਤੀਰ ਦਬਾਓ

ਪਿਛਲਾ ਸਫ਼ਾ